Exercice: Soit (O, I, J) un RON, placer A(-1;-3), B(-2; 1) et C(2; 2). On donne les longueurs $AB = \sqrt{17}$ et $BC = \sqrt{17}$

- 1. a. Calculer la longueur AC
 - **b.** Montrer que ABC est un triangle rectangle.
- 2. a. Expliquer où se trouve le centre K du cercle C circonscrit à ABC.
- **b.** Calculer les coordonnées du point K. Donner la valeur exacte du rayon du cercle C.
- 3. a. Placer D le symétrique de B par rapport à K.
 - **b.** Calculer les coordonnées du point D.
- 4. a. Montrer que ABCD est un parallélogramme.
 - b. Montrer que ABCD est un carré.

Placer le point B'(1; 3).

- **5. a.** Construire l'image de ABCD par la translation de vecteur \overline{BB} , on note cette image A'B'C'D'.
 - **b.** Montrer que $\overrightarrow{BC} = \overrightarrow{B'C'}$

Correction:

1. a. AC =
$$\sqrt{34}$$

b. récip. de Pythagore

est le milieu de l'hypoténuse [AC

b.
$$X_K = \frac{X_A + X_C}{2} = \frac{1}{2}$$

même travail pour $Y_K = -\frac{1}{2}$

Rayon =
$$\frac{AC}{2} = \frac{\sqrt{34}}{2}$$

3. b. K milieu de [BD]

donc $X_K = \frac{X_B + X_D}{2}$ ce qui donne $\frac{1}{2} = \frac{-2 + X_D}{2}$ qui équivaut à $1 = -2 + X_D$ et donc

 $X_D = 3$. Même travail avec Y_D . D(3; -2)

- 4. a. ABCD parallélogramme car [BD] et [AC] se coupent en leur milieu K.
- **b.** ABCD est parallélogramme + AB = BC, 2 côtés consécutifs égaux + \widehat{ABC} = 90°.
- 5. b. Comme \overline{BB} ' = \overline{CC} ' donc BB'C'C //gme et donc \overline{BC} = $\overline{B'C}$ '

Exercice: Soit (O, I, J) un RON, placer A(-1; -3), B(-2; 1) et C(2; 2). On donne les longueurs AB = $\sqrt{17}$ et BC = $\sqrt{17}$

- 1. a. Calculer la longueur AC
 - **b.** Montrer que ABC est un triangle rectangle.
- 2. a. Expliquer où se trouve le centre K du cercle C circonscrit à ABC.
- **b.** Calculer les coordonnées du point K. Donner la valeur exacte du rayon du cercle C.
- 3. a. Placer D le symétrique de B par rapport à K.
 - b. Calculer les coordonnées du point D.
- 4. a. Montrer que ABCD est un parallélogramme.
 - b. Montrer que ABCD est un carré.

Placer le point B'(1; 3).

- **5. a.** Construire l'image de ABCD par la translation de vecteur \overline{BB} , on note cette image A'B'C'D'.
 - **b.** Montrer que $\overrightarrow{BC} = \overrightarrow{B'C'}$

Correction:

- **1. a.** AC = $\sqrt{34}$
 - b. récip. de Pythagore
- **2. a.** ABC rect. en B donc

le centre du cercle circonscrit est le milieu de l'hypoténuse [AC

b.
$$X_K = \frac{X_A + X_C}{2} = \frac{1}{2}$$

même travail pour $Y_K = -\frac{1}{2}$

Rayon =
$$\frac{AC}{2} = \frac{\sqrt{34}}{2}$$

3. b. K milieu de [BD]

donc $X_K = \frac{X_B + X_D}{2}$ ce qui donne $\frac{1}{2} = \frac{-2 + X_D}{2}$ qui équivaut à $1 = -2 + X_D$ et donc

- $X_D = 3$. Même travail avec Y_D . D(3; -2)
- 4. a. ABCD parallélogramme car [BD] et [AC] se coupent en leur milieu K.
- **b.** ABCD est parallélogramme + AB = BC, 2 côtés consécutifs égaux + \widehat{ABC} = 90°.
- 5. b. Comme $\overrightarrow{BB}' = \overrightarrow{CC}'$ donc BB'C'C //gme et donc $\overrightarrow{BC} = \overrightarrow{B'C}'$