Erreur!

I / <u>Développer un produit</u> (rappels)

1°) Produit du type $k(a \pm b)$

$$\mathbf{k} - (\mathbf{a} + \mathbf{b}) = \mathbf{k}\mathbf{a} + \mathbf{k}\mathbf{b}$$

$$\mathbf{k} - (\mathbf{a} - \mathbf{b}) = \mathbf{k}\mathbf{a} - \mathbf{k}\mathbf{b}$$

On dit que la multiplication est distributive poar rapport à l'addition et à la soustraction.

Exemples :
$$3(x + 2) = 3x + 6$$

$$-2(1-4x) = -2 + 8x$$

2°) Produit du type (a + b)(c + d)

Quels que soient les nombres a, b, c et d, on a :

$$(a + b)(c + d) = ac + ad + bc + bd$$
 (« double distributivité »)

Lors d'un développement, il faut penser à réduire et ordonner les termes suivant les puissances décroissantes.

$$(x + 3)(5 - 4x)$$
 = $5x - 4x_{+} + 15 - 12x$
= $-4x_{-} - 7x + 15$

exercices d'application directe (oral et écrit)

II / Les identités remarquables

activités feuille (facultatif selon le niveau)

1°) Carré d'une somme

$$(a + b)_{-} = a_{-} + 2ab + b_{-}$$

(1^{ère} identité remarquable)

Le terme « 2ab » s'appelle le double produit.

vérification algébrique :

$$(a + b)_{-} = (a + b)(a + b)$$

= $a_{-} + ab + ba + b_{-}$
= $a_{-} + 2ab + b_{-}$

exemples:

$$(3x + 2)_{-} = 9x_{-} + 6x + 4$$

$$(5 + 2y)_{-} = 4y_{-} + 20y + 25$$

$$58$$
_ = $(50 + 8)$ _ = $2500 + 800 + 64 = 3364$

TD

2°) Carré d'une différence

$$(a-b)_{-} = a_{-} - 2ab + b_{-}$$
 (2^{ème} identité remarquable)

faire vérification algébrique.

E----1--- (- 2) - (- 10

$$(a + b)(a - b) = a_{-} - b_{-}$$

preuve :
$$(a + b)(a - b) = a_{-} - ab + ba - b_{-}$$

= $a_{-} - b_{-}$

exemples :
$$(x + 2)(x - 2) = x_{-} - 4$$

 $(10 - 3x)(10 + 3x) = 100 - 9x_{-} = -9x_{-} + 100$
 $103_{-}97 = (100 + 3)(100 - 3) = 10000 - 9 = 9991$

TD (mélanger les trois identités)

4°) Reconnaître des identités.

$$9x_{-} + 12x + 4 = ?$$
 $16 + 40x + 25x_{-} = ?$
 $49 - 4x_{-} = ?$
 $x_{-} + x + \frac{1}{4} = ?$
 $y_{-} - 81 = ?$
 $-81 + 100x_{-} = ?$

III / Factorisation

1°) <u>Méthode</u> : la factorisation consiste à transformer une somme (ou une différence) en un produit ; pour cela il faut :

soit trouver un facteur commun;

soit trouver une identité remarquable.

C'est le procédé « inverse » du développement.

Exemples	Méthode
A = (2x + 1)(x - 2) + 6(2x + 1) $= (2x + 1)[(x - 2) + 6]$ $= (2x + 1)(x + 4)$	On repère le facteur commun : (2x + 1) On le met en facteur et on regroupe les autres facteurs.
$B = (x + 4)_{-} - (1 - 5x)(x + 4)$ $= (x + 4)[(x + 4) - (1 - 5x)]$ $= (x + 4)[x + 4 - 1 + 5x]$ $= (x + 4)(6x + 3)$	Même principe, attention au signe moins devant la parenthèse!
$C = 4x_{-} - 12x + 9$ = $(2x - 3)_{-}$	On reconnaît la 2 ^{ème} identité remarquable :
$D = (3x + 2)_{-} - 25$ $= [(3x + 2) + 5]_{-} [(3x + 2) - 5]$ $= (3x + 7)(3x - 3)$ $= 3(x + 7)(x - 1)$	C'est une différence de deux carrés ($a b$); cela se factorise en $(a + b)(a - b)$; $(3x + 2) \rightarrow a$ $5 \rightarrow b$

$$E = (x + 6)_{-} - (2x + 1)_{-}$$

$$= [(x + 6) + (2x + 1)] [(x + 6) - (2x + 1)]$$

$$= [x + 6 + 2x + 1] [x + 6 - 2x - 1]$$

$$= (3x + 7)(-x + 5)$$

$$(x+6) \rightarrow a$$

 $(2x+1) \rightarrow b$

IV / Equation-produit

1°) Propriété:

Tout nombre ou expression littérale, multiplié par zéro, est égal à zéro. Réciproquement, si un produit de facteurs est nul, alors au moins un des facteurs est nul.

2°) Exemples:

- 5x = 0 _ x = 0
- 3(x+1) = 0 x+1=0 (car 3 _ 0) donc x=-1
- (2x + 1)(7 5x) = 0 soit 2x + 1 = 0 donc $x = \frac{-1}{2}$

$$soit 7 - 5x = 0 donc x = \frac{7}{5}$$

équation-produit

On dit que $\frac{-1}{2}$ et $\frac{7}{5}$ sont les deux solutions de l'équation.

Pour toute équation-produit, il faut penser à justifier la méthode en citant la propriété réciproque.

TD