1 Ordre et comparaison

1.1 Comparaison de fractions

<u>Propriété</u>: on ne change pas la valeur d'une fraction en multipliant (ou divisant) le numérateur et le dénominateur par le même nombre.

Exemples:
$$\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20}$$

 $\frac{24}{16} = \frac{24 : 4}{16 : 4} = \frac{6}{4} = \frac{6 : 2}{4 : 2} = \frac{3}{2}$

Propriétés :

- Si deux fractions ont le même dénominateur, c'est celle qui a le plus grand numérateur qui est la plus grande.
- Si deux fractions ont le même numérateur, c'est celle qui a le plus petit dénominateur qui est la plus grande.

Exemples:
$$\frac{7}{3} < \frac{13}{3}$$

 $\frac{3}{5} > \frac{2}{5}$
 $\frac{1}{5} > \frac{1}{7}$

<u>Propriétés</u>:

- Une fraction dont le numérateur est plus grand que le dénominateur est supérieure à 1.
- Une fraction dont le numérateur est plus petit que le dénominateur est inférieure à 1.

Exemples:
$$\frac{8}{3} > 1$$

 $\frac{6}{7} < 1$

Si on ne peut appliquer directement une de ces méthodes on peut :

• trouver un dénominateur commun à chaque fraction

Exemple:
$$\frac{3}{4}$$
 et $\frac{5}{8}$ on a $\frac{3}{4} = \frac{6}{8}$ donc $\frac{3}{4} > \frac{5}{8}$

• comparer les fractions à un même nombre

Exemple:
$$\frac{5}{4}$$
 et $\frac{1}{3}$ on a $\frac{5}{4} > 1$ et $1 > \frac{1}{3}$ donc $\frac{5}{4} > \frac{1}{3}$

• comparer les troncatures à un même rang

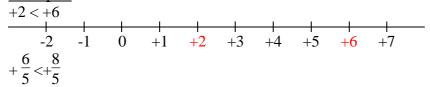
$$\underline{\text{Exemple}}: \frac{35}{127} \text{ et } \frac{32}{119}$$

La troncature de
$$\frac{35}{127}$$
 au centième est 0,27 et celle de $\frac{32}{119}$ est 0,26 donc $\frac{35}{127} > \frac{32}{119}$

1.2 Comparaison de nombres relatifs

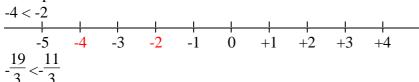
• Si deux nombres sont positifs, le plus grand est celui qui a la plus grande valeur absolue.

Exemples:



• Si deux nombres sont négatifs le plus grand est celui qui a la plus petite valeur absolue

Exemples:



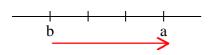
• Si deux nombres sont de signes différents le plus grand est le nombre positif.

Exemple:

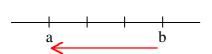
1.3 Signe de la différence

Propriété : Soit a et b deux relatifs

Si a - b > 0 alors a > b



si a – b<0 alors a<b



Exemple : $\sin x - 2 > 0$ alors x > 2

2 Ordre et opérations

2.1 Inégalité

7+6>9-3 est une inégalité composée de deux membres, 7+6 et 9-3.

2.2 Addition et soustraction

<u>Propriété</u>: ajouter (ou soustraire) aux deux membres d'une inégalité le même nombre ne change pas la comparaison des deux membres.

Exemples:
$$5 < 8 \text{ donc } 5 + 6,56 < 8 + 6,56$$

 $-2 > -8 \text{ donc } -2 + \sqrt{3} > -8 + \sqrt{3}$
 $\text{si } x > 5 \text{ alors } x - 9 > -4$

2.3 Multiplication et division

<u>Propriété</u>: Multiplier (ou diviser), en entier, les deux membres d'une inégalité par un nombre strictement positif ne change pas la comparaison entre ces deux membres.

Exemples:
$$14 > 5$$
 donc $14 \times 9,4575 > 5 \times 9,4575$
 $-6 < 3$ donc $-6\sqrt{5} < 3\sqrt{5}$
 $si \frac{x}{3} > 9$ alors $x > 9 \times 3$

<u>Propriété</u>: Multiplier (ou diviser), en entier, les deux membres d'une inégalité par un nombre strictement <u>négatif</u> change la comparaison entre ses deux membres.

<u>Exemple</u>: 2 < 4 et $2 \times (-5) = -10$ et $4 \times (-5) = -20$ donc $2 \times (-5) > 4 \times (-5)$

3 Inéquation

3.1 Définition

3x + 2 < 6x + 7 est une inéquation composée de deux membres : 3x + 2 et 6x - 7. Le signe < sera appelé (dans ce cours) le sens de l'inéquation.

La résoudre c'est trouver tous les nombres x (ou un encadrement de ces x) qui vérifient cette inégalité.

5 est une solution de 3x + 2 < 6x - 7 car $3 \times 5 + 2 = 17$ et $6 \times 5 + 7 = 37$ donc $3 \times 5 + 2 < 6 \times 5 + 7$ -4 n'est pas une solution car $3 \times (-4) + 2 = -10$ et $6 \times (-4) + 7 = -17$ donc $3 \times 1 + 2 \ge 6 \times 1 + 7$

3.2 Résolution

<u>Règle 1</u>: on peut additionner (ou soustraire) le même nombre dans chaque membre d'une inéquation sans en changer le sens.

Règle $\underline{2}$: on peut multiplier (ou diviser) par le même nombre <u>positif</u> les deux membres d'une inéquation sans en changer les sens.

<u>Règle 3</u>: multiplier (ou diviser) par le même nombre <u>négatif</u> les deux membres d'une inéquation en <u>change</u> le sens.

$$3x + 2 < 6x + 7$$

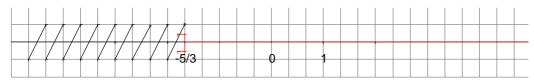
$$3x - 6x < 7 - 2$$

$$-3x < 5$$

$$x > -\frac{5}{3}$$

Tous les x supérieurs strictement à $-\frac{5}{3}$ sont solutions de l'inéquation.

Représentation graphique :



Les solutions sont dans la zone non-hachurée. (Le crochet indique que $-\frac{5}{3}$ fait partie de la zone non-hachurée)

Pour vérifier, on vérifie deux choses :

* la valeur « frontière »
$$-\frac{5}{3}$$
: $3 \times -\frac{5}{3} + 2 = -5 + 2 = -3$ et $6 \times -\frac{5}{3} + 7 = -10 + 7 = -3$

* le sens de l'inéquation. On choisit n'importe quel nombre plus grand que $-\frac{5}{3}$ et on vérifie s'il fait bien partie des solutions. Par exemple $1: 3 \times 1 + 2 = 5$ et $6 \times 1 + 7 = 13$ on a bien $3 \times 1 + 2 < 6 \times 1 + 7$