EVALUATION BILAN DES TROISIEMES

EXERCICE 01:

- 1) Le nombre x = 2 est-il solution de l'inéquation $(2x + 3)(x 7) \le 0$? (Justifie)
- 2) Le nombre x = -3 est-il solution de l'inéquation 2(-x+4) < 5-(3x+1)? (Justifie)
- 3) Le nombre x = 0 est-il solution de l'inéquation $x^2 6x > 6$? (Justifie)

EXERCICE 02:

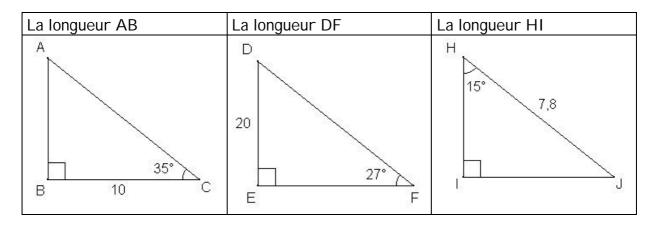
Résous les inéquations suivantes :

1)
$$4 + x > -3 - 5x$$

2)
$$2(-x+2) - 3(x-3) \ge 0$$

$$3)(x+3)^2 < x^2 + 9x - 1$$

EXERCICE 03:

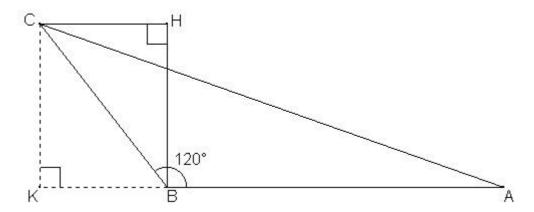

Représente sur une droite graduée, les solutions de :

$$1) \begin{cases} x \ge 2 \\ x \le 3 \end{cases}$$

$$2) \begin{cases} x \le 6 \\ x > -2 \end{cases}$$

EXERCICE 04:

Calcule (sans rédiger mais proprement)


EXERCICE 05:

Calcule (sans rédiger mais proprement)

Les angles aux points M et K	Les angles aux points P et N	Les angles aux points S et Q
X 30 L 45 M	30 100 P	9,8 R 3,6 S

EXERCICE 06:

Dans cet exercice, l'unité de longueur est le centimètre. Sur la figure ci-dessous, on donne AB = 9 et BH = CK = 4

BKCH est un rectangle.

L'angle ABC mesure 120 degrés.

- 1. Trouver la mesure de l'angle \overrightarrow{CBH} .
- 2.Trouver la mesure exacte de la longueur du segment [BC]. En déduire la mesure exacte du segment [CH] puis celle de [AK]
- 3. Calculer une valeur approchée au degré le plus proche de la mesure de l'angle \bigwedge BAC .

EVALUATION BILAN

					SOLUTIONS	В	A	R	E1	E2	E3	N/3
T	N	5	0	1	Prouver qu'un nombre est solution d'une inéquation							
T	N	5	0	2	Prouver qu'un nombre est sol d'un système d'inéquations							
T	N	5	0	5	Savoir traduire x <a (="")="" droite="" graduée<="" sur="" th="" une=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th>							
T	N	5	0	6	Savoir traduire x <a (="")="" par="" phrase<="" th="" une=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th>							
T	N	5	0	7	Savoir traduire un système sur une droite graduée							

					RESOLUTION	B	A	R	E1	E2	E3	N/3
T	N	5	1	1	Résoudre les inéquations de bases : $x + a < b$							
\mathbf{T}	N	5	1	2	Résoudre les inéquations de bases : ax < b							
T	N	5	1	3	Résoudre une inéquation du premier degré							

					LA TRIGONOMETRIE (Déf et Form)	В	A	R	E1	E2	E3	N/3
T	G	1	1	1	Reconnaître l'hypoténuse d'un triangle rectangle							
T	\mathbf{G}	1	1	2	Reconnaître le côté adjacent d'un angle aigu							
Т	G	1	1	3	Reconnaître le côté opposé d'un angle aigu							
Т	G	1	1	4	Savoir les trois formules cos, sin et tan							
T	G	1	1	6	Savoir laquelle des formules utiliser							

					LA TRIGONOMETRIE (Calculs)	B	A	R	E1	E2	E3	N/3
T	G	1	2	1	Calculer un angle connaissant cos, sin ou tan							
T	\mathbf{G}	1	2	2	Calculer une longueur à l'aide de cos, sin ou tan							
Т	G	1	2	3	Faire des calculs dans une situation plus complexe							
T	G	1	2	4	Connaître et utiliser la formule $\cos^2 + \sin^2 = 1$							