EXERCICE 1.

Pour chaque question, une seule des quatre réponses proposées est exacte. Trouver la bonne réponse sans untiliser la calculatrice.

		a	b	С	d
1	les nombres dont le carré est 16 sont	16 et -16	256 et –256	4 et –4	2 et -2
2	tout nombre positif	a deux racines carrées	a une racine carrée unique	n'a pas toujours de racine carrée	n'a jamais de racine carrée
3	√100	n'existe pas	= -10	= 10	= 10 000
4	√-25	= -5	= 5	= 25	n'existe pas
5	$\sqrt{3^2}$	= 2	= 3	= 4	= 9
6	$\sqrt{49}$	= 7	$= 7\sqrt{7}$	= -7	= 72
7	$\sqrt{3}$	= 1,7	< 1,7	> 1,7	= 3
8	√9×√7	$=\sqrt{9+7}$	$=\sqrt{9\times7}$	$=\sqrt{9-7}$	$= 9\sqrt{7}$
9	$\frac{\sqrt{10}}{\sqrt{12}} \dots$	$=\sqrt{\frac{10}{12}}$	= $\sqrt{12 - 10}$	$= \sqrt{10 \times 12}$	$=\sqrt{\frac{12}{10}}$
10	(7√2) ²	= 14	= 28	= 98	= 196
11	√4+25+49	$=\sqrt{4+25+49}$	$=\sqrt{78}$	= 2+5+7	= 8,8
12	$\sqrt{18} + \sqrt{50} + \sqrt{98}$	= $\sqrt{166}$	$= 2\sqrt{15}$	$= 3\sqrt{10}$	$= 15\sqrt{2}$

EXERCICE 2.

Parmi les écritures suivantes, lesquelles sont égales à 3 ; à -3 ? Lesquelles n'ont pas de sens ?

. a iss some so survantes, issofusines some sgares a s ,				90.0	pas as os.			
	(-√3) ² ;	$-(\sqrt{3})^2$;	-√9;	$\sqrt{-3^2}$;	$\sqrt{(-3^2)}$;	$\sqrt{3^2}$;	√-9	$-\sqrt{(-3)^2}$
Est égale à 3	, ,							
Est égale à 3								
N'existe pas								

EXERCICE 3.

Calculer lorsque cela est possible :

			I	I	
$\sqrt{13^2} = \dots$;	$\sqrt{37^2} = \dots$;	$\sqrt{11} \times \sqrt{11} = \dots$;	√-16=	$\sqrt{136^2} = \dots$	$\sqrt{-(10)^2} = \dots$;
$-\sqrt{10^2} = \dots$;	$\sqrt{49} =$;	$\sqrt{0.04} = \dots$;	√16 =	$\sqrt{\frac{3}{48}} = \dots$	$\sqrt{0.49} = \dots$;

EXERCICE 4.

Donner la valeur décimale exacte ou approchée à 0,01 près par défaut de chacun des nombres suivants :

$\sqrt{2} = \dots$	$\sqrt{3} = \dots$	$\sqrt{4} = \dots$	$\sqrt{5} = \dots$	$\sqrt{6} = \dots$
$\sqrt{7} = \dots$	$\sqrt{13} =$	$\sqrt{1\ 111} = \dots$	$\sqrt{1\ 000} =$	$\sqrt{0.75} =$
$\sqrt{69}$ =	$\sqrt{52}$ =	$\sqrt{108} =$	$\sqrt{1\ 209} =$	$\sqrt{9999} =$