REVISIONS: Géométrie

- EXERCICE N° 1 : EFG est un triangle rectangle en E tel que, en cm, FG = 6 et $E\hat{F}G$ = 25°.
 - 1°) Faire une figure.
 - 2°) Quel est le côté adjacent à l'angle \hat{G} ? Donner une expression de $\cos \hat{G}$.
 - 3°) En déduire une valeur approchée de la longueur EG.
- EXERCICE N° 2: MIL est un triangle rectangle en M tel que, en cm, IM = 2,5 et \widehat{MIL} = 35°.
 - 1°) Faire une figure.
 - 2°) Quel est le côté adjacent à l'angle \hat{I} ? Donner une expression de $\cos \hat{I}$.
 - 3°) En déduire une valeur approchée de la longueur de l'hypoténuse.
- EXERCICE N° 3 : ABC est un triangle rectangle en A tel que, en cm, BC = 5 et AB = 3.
 - 1°) Faire une figure.
 - 2°) Calculer cos \hat{B} . En déduire une valeur approchée de l'angle \hat{B} arrondie au dixième.
 - 3°) Calculer la longueur du côté AC.
- EXERCICE N° 4: ABC est un triangle rectangle en A et [AH] est sa hauteur issue de A. Par ailleurs en cm, on a : AC = 6 et CH = 4.
 - 1°) Calculer une valeur approchée de AH.
 - 2°) Construire le triangle ABC.

EXERCICE N° 5:

- 1°) Construire un rectangle ABCD tel que, en cm, AB = 3 et BC = 10. Marquer le point I du segment [BC] tel que BI = 1.
- 2°) Calculer AI ² et DI ².
- 3°) Démontrer que l'on a : (AI) \perp (ID).
- EXERCICE N° 6: ABCD est un rectangle tel que, en cm, AB = 7 et AD = 6. I est le point de [AD] tel que AI =2 et M est le point de [AB] tel que AM = 3.
 - 1°) Calculer IM ² puis une valeur approchée de IM.

 - 2°) Calculer IC ² puis une valeur approchée de IC. 3°) Calculer MC ² puis une valeur approchée de MC.
 - 4°) Le triangle MIC est-il rectangle? justifier.