PUISSANCES

1) Définition :

$$a^n = \underbrace{a \times a \times ... \times a}_{n \text{ fois}}$$

a s'appelle

n s'appelle

Par convention : $a^0=1$.

Remarque : Si a est négatif :

Si n est pair (2; 4; 6...), alors aⁿ est positif. Ex : $(-3)^4$ =...... Si n est impair (3; 5...), alors aⁿ est négatif. Ex : $(-3)^3$ =.....

2) Propriétés:

Formules:

$$\mathbf{a}^{p} \times \mathbf{a}^{q} = \mathbf{a}^{p+q}$$
$$(\mathbf{a}^{p})^{q} = \mathbf{a}^{p \times q}$$
$$\frac{\mathbf{a}^{p}}{\mathbf{a}^{q}} = \mathbf{a}^{p-q}$$
$$(\mathbf{a} \times \mathbf{b})^{n} = \mathbf{a}^{n} \times \mathbf{b}^{n}$$

3) Notation scientifique:

 $10^{\rm n} = 10000000...$ avec n zéro. Ex : $10^4 = 10000$.

Tout nombre positif peut s'écrire sous la forme : $a \times 10^n$ où $1 \le a < 10$ On appelle cette notation la notation scientifique.

Ex:
$$1787 = 1,787 \cdot 10^3$$

 $150000 = \dots$
 $0.08 = \dots$

Exercice 1:

Calculer les nombres suivants :

$$4^3$$
; $(-1)^7$; 5^3 ; $(-2)^4$; 10^4 ; 3^3 ; $(-10)^5$

Exercice 2:

Mettre les expressions suivantes sous la forme aⁿ:

$$A = 3^{12} \times 3^7$$
; $B = 4^2 \times 4^5 \times 4^3$

$$C = (5^3)^5$$
 ; $D = (9^3)^7$

$$E = \frac{7^7}{7^2}$$
 ; $F = \frac{2^{12}}{2^5}$

$$G = 2^3 \times 5^3$$
 ; $H = 7^{12} \times 2^{12}$

Exercice 3:

Mettre les expressions suivantes sous la forme aⁿ :

$$I = 4^2 \times 4^5 \times (4^3)^2$$

$$J = (7^2)^3 \times (7^4)^5$$

$$K = (5^2)^4 \times 5$$
 $L = \frac{3^7}{3^4}$

$$M = (2^3)^4 N = \frac{(2^5)^4}{(2^4)^4}$$

$$O = 2^5 \times 3^5 \times 7^5$$

Exercice 4: Mets les nombres suivants en notation scientifique :

- a) 20 000
- b) 470 000
- c) 185 000 000

- d) 0.5
- e) 0,0007
- f) 0,000019

- g) 1457
- h) 0,0487
- i) 57 000 000 000

Exercice 5:

Donne le résultat exact de cette multiplication :

Indication: $298\ 023\ 223\ 876\ 953\ 125 = 5^{25}$ et $33\ 554\ 432 = 2^{25}$.