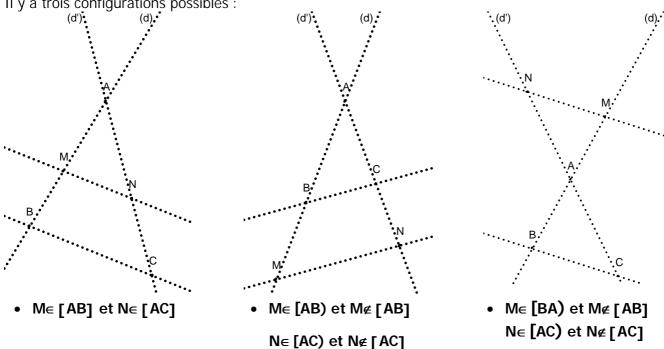
I. PROPRIETE DE THALES:

Propriété:

Etant données deux droites d et d' sécantes en A, deux points B et M de d, distincts de A, deux points C et N de d', distincts de A,

Si les droites (BC) et (MN) sont parallèles, alors : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

Il y a trois configurations possibles:



Autrement dit:

Dans les conditions de la propriété de Thalès, le tableau suivant est un tableau de proportionnalité :

	Côtés portés par la droite d	Côtés portés par la droite d'	Côtés portés par les parallèles
Côtés de AMN	AM	AN	MN
Côtés de ABC	AB	AC	ВС

Remarque:

- 1) La propriété de Thalès permet de calculer une longueur quand on en connaît trois autres.
- 2) La propriété de Thalès permet de démontrer que des droites ne sont pas parallèles : des les condition de la propriété de Thalès , si $\frac{AM}{AB} \neq \frac{AN}{AC}$ alors les droites (BC) et (MN) ne sont pas parallèles.

Exemple:

On considère la figure suivante avec (ST)//(UV). Calculer KV et ST.

→ Les droites (TV) et (SU) sont sécantes en K.

Puisque les droites (ST) et (UV) sont parallèles, d'après la propriété de Thalès, on a :

 $\frac{\mathbf{KT}}{\mathbf{KV}} = \frac{\mathbf{KS}}{\mathbf{KU}} = \frac{\mathbf{ST}}{\mathbf{UV}}$ d'où, en remplaçant avec les données de la figure : $\frac{3}{KV} = \frac{5}{9} = \frac{ST}{6.3}$

En utilisant le produit en croix, on arrive à : $KV = \frac{3 \times 9}{5} = 5.4$ et $ST = \frac{5 \times 6.3}{9} = 3.5$

II. RECIPROQUE DE LA PROPRIETE DE THALES:

Propriété:

Etant données deux droites d et d' sécantes en A, deux points B et M de d, distincts de A, deux points C et N de d', distincts de A,

Si $\frac{AM}{AB} = \frac{AN}{AC}$ et si les points A, B, M sont dans le même ordre que les points A, C, N,

Alors les droites (BC) et (MN) sont parallèles.

Remarque :

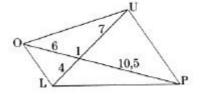
- 1) La réciproque de la propriété de Thalès permet de démontrer que des droites sont parallèles. Dans les conditions la réciproque de la propriété de Thalès, le rapport $\frac{MN}{BC}$ est égal aux deux autres.
- 2) Pour appliquer la réciproque de la propriété de Thalès, il y a deux conditions importantes :

- La première : $\frac{AM}{AB} = \frac{AN}{AC}$;

- La seconde : « les points A, B, M sont dans le même ordre que les points A, C, N ».

Exemple:

Avec les données de la figure suivante, démontrer que (OL) est parallèle à (UP)



- → Les droites (OP) et (UL) sont sécantes en I.
 - Les points O, I, P et L, I, P sont alignés dans le même ordre .

- D'autre part, on a : $\frac{IP}{IO} = \frac{10.5}{6} = 1.75$ et $\frac{IU}{IL} = \frac{7}{4} = 1.75$

Puisque les deux rapports sont égaux, on peut appliquer la réciproque de la propriété de Thalès, et on déduit que (OL) est parallèle à (UP).