Erreur!

Exemple 1 : Voici une figure représentant un triangle ABC rectangle en A tel que AB = 4 cm et $\overrightarrow{ABC} = 56^{\circ}$. On veut calculer AC .

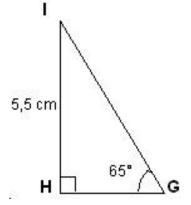
Information	On connaît ABC et son côté adjacent AB;
Recherche	On recherche AC qui est le côté opposé à
	ABC;
Formule	On utilise la formule utilisant côté adjacent et côté opposé : _ TANGENTE

Dans le triangle ABC rectangle en A, $\tan \widehat{ABC} = \frac{AC}{AB}$ $\tan 56^{\circ} = \frac{AC}{A}$

Donc AC = $4\tan 56^{\circ}$ (valeur exacte) AC _ 5,9 cm (valeur arrondie au mm près)

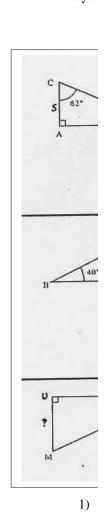
Exemple 2 : On a dessiné ci-contre un triangle GHI rectangle en H tel que HI = 5.5 cm et HGI = 65° . On veut calculer IG.

Information	On connaît HGI et son côté opposé HI;
Recherche	On recherche IG qui est l'hypoténuse ;
Formule	On utilise la formule utilisant côté opposé et hypoténuse : SINUS


Dans le triangle GHI rectangle en H :

$$\widehat{\text{Sin HGI}} = \frac{\text{HI}}{\text{IG}}$$

Sin 65° = **Erreur!** d'où IG $_$ sin 65° = 5,5


Donc IG = **Erreur!** (valeur exacte)

IG _ 6,1 cm (arrondi au mm près)

APPLICATIONS

En utilisant le principe « IRF », détermine pour chaque figure le

2)