Corrigé du devoir n°28

Exercice 1

1. Si a = 1, $\frac{1}{a} = 1$, il faudrait donc que $\frac{1}{b} = 0$, ce qui est impossible. De même si b = 1

2. Si a > 2, $\frac{1}{a} < \frac{1}{2}$, il faut donc $\frac{1}{b} > \frac{1}{2}$; c'est à dire que b doit être plus petit que 2.

3. La seule solution possible est donc que a et b soient égaux à 2.

4. Si
$$a = 2$$
, $b = 3$ et $c = 6$, on $a : \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$

Exercice 2

Si la grosse pèse 24 kg et la petite 3 kg, cela signifie que le volume de la grosse est 8 fois plus important que celui de la petite. Et, par conséquent que le rayon de la grosse est 2 fois plus grand que celui de la petite car $2^3 = 8$.

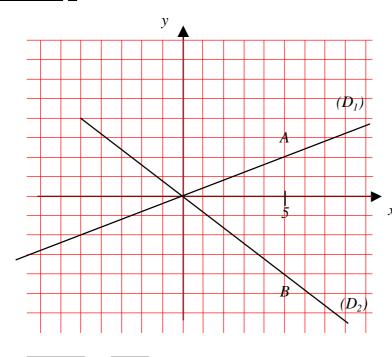
L'aire de la grosse est donc $2^2 = 4$ fois plus grande que celle de la petite. Il faudra donc 4 fois moins de peinture pour la petite que pour la grosse. C'est à dire 900 , 4 = 225g.

Exercice 3

Chacun des angle \mathbf{a} , \mathbf{b} et \mathbf{d} est la moitié d'un des angles du triangle, donc la somme des trois sera la moitié de la somme des angles du triangle. C'est à dire : $\mathbf{a} + \mathbf{b} + \mathbf{d} = 90^{\circ}$

Dans le triangle AIB, $\widehat{AIB} = 180 - (\mathbf{a} + \mathbf{b})$. Or $\mathbf{a} + \mathbf{b} = 90^{\circ} - \mathbf{d}$. Donc $\widehat{AIB} = 90 + \mathbf{d}$ Dans le triangle BIC, $\widehat{BIC} = 180 - (\mathbf{d} + \mathbf{b})$. Or $\mathbf{d} + \mathbf{b} = 90^{\circ} - \mathbf{a}$. Donc $\widehat{BIC} = 90 + \mathbf{a}$ Dans le triangle CIA, $\widehat{CIA} = 180 - (\mathbf{d} + \mathbf{a})$. Or $\mathbf{d} + \mathbf{a} = 90^{\circ} - \mathbf{b}$. Donc $\widehat{CIA} = 90 + \mathbf{b}$

Exercice 4



$$\sqrt{2,5^2+4^2} = \sqrt{22,25} \approx 4,7 \, cm.$$

Ordonnée de A : 2 Ordonnée de B : - 4

Aire du triangle OAB:

$$A = \frac{1}{2}OH AB = 5.6 , 2 = 15 cm^{2}.$$

$$OA = \sqrt{5^2 + 2^2} = \sqrt{29} \approx 5.4.$$

 $BB' = (2 A) OA = 2.5$
 $2 5.4 = 5.4$

Pour la médiane de AOB relative au côté [OB], on cherche les coordonnées du milieu de [OB]; on obtient: (2,5; 2); et on se sert de ces coordonnées pour calculer la longueur de la médiane: