BISSECTRICES ET ANGLES DANS UN TRIANGLE

Utilisation du logiciel de géométrie « déclic »

- 1. Tracer un triangle ABC.
- 2. Tracer, en rouge, les bissectrices des angles \widehat{ABC} et \widehat{ACB} . Elles se coupent en un point I. Placer le point I en bleu. Ecrire les mesures des angles \widehat{BAC} et \widehat{BIC} .

3.
a) On obtient des triangles différents en déplaçant l'un des sommets A, B ou C : pour 5 triangles distincts obtenus compléter le tableau suivant :

	Triangle 1	Triangle 2	Triangle 3	Triangle 4	Triangle 5
$a = \widehat{BAC}$					
i = BIC					

b) A la question du professeur : « Peut-on écrire i en fonction de a ? »

Alain a proposé : i = 90 + 2a; Marie a proposé : i = 180 - a; Philippe pense que : $i = 90 + \frac{a}{2}$;

Sonia pense que la bonne formule est : i = 45 + 3a et Rémy est sûr que : $i = \frac{45 + a}{2}$.

Pour savoir qui a raison le professeur propose de compléter, de tête, le tableau suivant :

a	10°	20°	30°	45°	60°
90 + 2a					
180 – a					
$90 + \frac{a}{2}$					
45 + 3a					
$\frac{45+a}{2}$					

d) En comparant les deux tableaux pouvez vous conjecturer l'écriture de i en fonction de a	?
i = a trouvé la bonne écriture.	

e) Démontrer cette conjecture (ou cette égalité).