(Amiens, Lille, Paris, Créteil, Versailles, Rouen)

Activités numériques : 12 points

Exercice 1:

$$A = \frac{12}{5} - \frac{3}{5} \times \frac{7}{9}$$
 et $B = (\frac{2}{3} - 3) \div \frac{1}{9}$

- 1. Calculer A et écrire la réponse sous forme de fraction irréductible.
- 2. Calculer B et écrire la réponse sous forme d'un entier relatif.

Exercice 2:

$$C = \sqrt{18} \times \sqrt{6}$$
 et $D = 5\sqrt{12} + 6\sqrt{3} - \sqrt{300}$

Ecrire **C** et **D** sous forme $\mathbf{a}\sqrt{\mathbf{3}}$ où \mathbf{a} est un entier.

Exercice 3:

$$E = 4x^2 - 9 + (2x + 3)(x - 1)$$

- **1.** Factoriser $4x^2 9$. Utiliser alors ce résultat pour factoriser **E**.
- 2. Développer et réduire E.
- **3.** Résoudre l'équation (2x + 3)(3x 4) = 0.

Exercice 4:

Un premier bouquet de fleur est composé de 3 iris et 4 roses jaunes, il coûte 9 €. Un second bouquet est composé de 5 iris et de 6 roses jaunes, il coûte 14 €.

On appelle x le prix en euros d'un iris et y le prix en euros d'une rose jaune.

Ecrire un système d'équations traduisant les données de ce problème et calculer le prix d'un iris et celui d'une rose jaune.

Version originale en francs

Un premier bouquet de fleur est composé de 3 iris et 4 roses jaunes, il coûte 48 F. Un second bouquet est composé de 5 iris et de 6 roses jaunes, il coûte 75 F.


On appelle $\,x\,$ le prix en francs d'un iris et $\,$ y $\,$ le prix en francs d'une rose jaune.

Ecrire un système d'équations traduisant les données de ce problème et calculer le prix d'un iris et celui d'une rose jaune.

Activités géométriques : 12 points

Exercice 1:

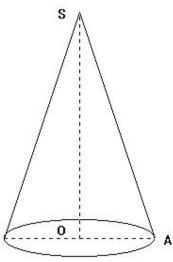
ABC est un triangle rectangle en **A** tel que : AB = 5 cm et BC = 7, 5 cm.

Le point M est sur la droite (AB), à l'extérieur du segment [AB] tel que AM = 2 cm.
La parallèle à (BC) passant par M coupe la droite (AC) en N.

A B

Calculer MN.

Exercice 2


Le cône de révolution ci-dessous de sommet **S** a une hauteur **SO** de **9 cm** et un rayon de base **OA** de **5 cm**.

1. Calculer le volume V₁ de ce cône au cm³ près.

2. Soit M le point du segment [SO] tel que SM = 3 cm.

On coupe le cône par un plan parallèle à la base passant par M.

Calculer le volume **V**₂ du petit cône de sommet **S** ainsi obtenu au **cm**³ près.

Exercice 3:

Les constructions des guestions 1. et 2. sont à faire sur la feuille annexe.

- **1.** Sur la feuille annexe, on a tracé le segment [AB] tel que AB = 7 cm Placer un point C tel que \widehat{BAC} = 70 ° et \widehat{ABC} = 60 °.
- **2.** Construire le cercle circonscrit au triangle **ABC**, et appeler **O** son centre. On laissera les traits de construction.
- **3.** Donner la mesure de l'angle \widehat{AOC} en justifiant la réponse.

Problème: 12 points

- 1. a. On a tracé ci-dessous le segment [BC] tel que BC = 15 cm. Placer un point A tel que AB = 9 cm et AC = 12 cm.
 - **b.** Démontrer que **ABC** est un triangle rectangle.
- 2. a. Placer le milieu M de [BC]. Tracer le cercle de diamètre [AB]. Ce cercle recoupe le segment [BC] en D et le segment [AM] en E.
 - **b.** Démontrer que les triangles **ABE** et **ABD** sont rectangles.
- **3. a.** Construire le point **F**, symétrique du point **E** par rapport au point **M**.
 - **b.** Démontrer que le quadrilatère **BECF** est un parallélogramme.
 - c. En déduire que les droites (BE) et (CF) sont parallèles, et que les droites (AF) et (CF) sont perpendiculaires.
- **4.** Soit **H** le point d'intersection des droites **(AD)** et **(BE)**. Soit **K** le point d'intersection des droites **(AD)** et **(CF)**.
 - a. Que représentent les droites (AD) et (BE) pour le triangle ABM?

En déduire que les droites (HM) et (AB) sont perpendiculaires.

Démontrer de même que les droites (KM) et (AC) sont perpendiculaires.

b. On appelle I le point d'intersection des droites (AB) et (MH).
On appelle J le point d'intersection des droites (AC) et (KM).

Démontrer que le quadrilatère **AIMJ** est un rectangle.

En déduire que le triangle **HMK** est rectangle.