(Orieans 1995)

PARTIE NUMERIQUE

Exercice 1: (2 points)

On considère les nombres :

$$A = \frac{3.5}{2} + \frac{1}{7}$$
 $B = \frac{5}{7} : \left(-\frac{2}{3}\right)$ $C = \frac{3.2 \times 10^5}{2 \times 10^6}$

En écrivant les différentes étapes des calculs :

- 1) Donner une écriture fractionnaire des nombres A et B.
- 2) Donner une écriture décimale du nombre C.

Exercice 2: (2 points)

On donne les nombres $D = 5 - 3\sqrt{2}$ et $E = 4 + 5\sqrt{2}$.

Calculer D - E; D \times E.

On donnera les résultats sous la forme $a+b\sqrt{2}$ où a et b sont des nombres entiers relatifs.

Exercice 3: (2 points)

Factoriser l'expression $F = (2x + 1)^2 - 16$.

Exercice 4: (2 points)

Résoudre l'équation (3x + 20)(4x - 7) = 0.

Exercice 5: (2 points)

Résoudre l'inéquation $3x - 4 \le 5(x - 1)$.

Représenter en couleur les solutions sur une droite graduée.

Exercice 6: (2 points)

Le tableau suivant représente la répartition des notes obtenues par les élèves d'une classe lors d'un contrôle.

Note n	$0 \le n < 5$	$5 \le n < 10$	$10 \le n < 15$	$15 \le n < 20$
Effectif	2	8	11	è

1) Représenter sur la copie cette répartition par un diagramme en barres. On prendra :

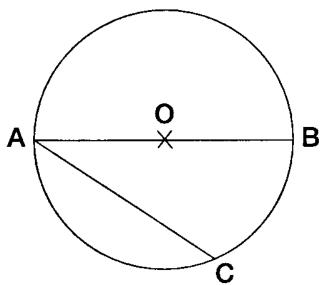
- nonzontalement : \angle cm pour \Im points;
- verticalement : 0,5 cm pour 1 élève.
- 2) Calculer le pourcentage des élèves de la classe qui ont une note supérieure ou égale à 10 arrondir à 0,1 % près.

PARTIE GEOMETRIQUE

Exercice 1: (5 points)

Soit un cercle de centre O et de rayon 3 cm.

[AB] est un diamètre et C un point du cercle tel que AC = 4.6 cm.



- 1) Faire la figure en vraie grandeur.
- 2) Démontrer que le triangle ABC est rectangle en C.
- 3) Déterminer, à l'aide d'un calcul, la mesure de l'angle $C\widehat{B}A$ (arrondir cette mesure à 1° près).
- 4) Par la symétrie de centre C, le point A a pour image D et le point B a pour image E. Construire D et E.

Démontrer que le quadrilatère ABDE est un losange.

Exercice 2: (4 points)

Le plan est muni d'un repère orthonormal (O, I, J).

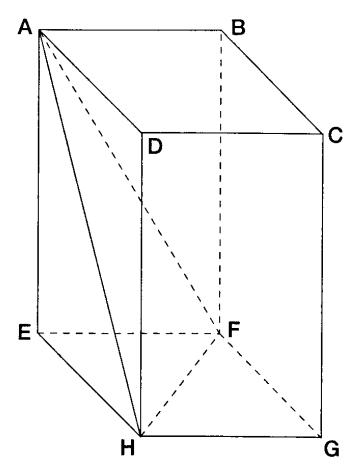
L'unité est le centimètre.

1) Placer les points A(3; 2,5), B(0; -1) et C(-1; 3,5).

- 2) Calculer les distances AB et BC. On gardera les valeurs exactes. En déduire une propriété du triangle ABC.
- 3) Placer le point M défini par : CM = CA + CB.

Exercice 3: (3 points)

La figure ci-contre représente un parallélépipède ABCDEFGH en perspective.



On donne:

AE = 5 cm

EH = 3.4 cm

HG = 3 cm.

- 1) Calculer le volume de la pyramide AEHF.
- 2) Sans effectuer de calcul, dessiner un patron en grandeur réelle de cette pyramide.

On laissera apparents les traits de construction et on marquera les égalités de longueur.

PROBLEME (12 points)

Les parties I et II sont indépendantes.

I - Construire un triangle ABM rectangle en M tel que :

MA = 6 cm et MB = 3 cm.

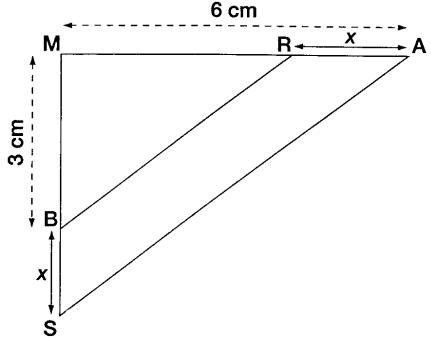
Placer le point R du segment [AM] tel que AR = 2 cm.

Placer le point S de la demi-droite [MB) d'origine M extérieur au segment [MB] et tel que BS = 1,5 cm.

On traitera les questions suivantes en citant les propriétés utilisées.

- 1) Calculer la longueur BR.
- 2) Démontrer que les droites (AS) et (RB) sont parallèles.
- 3) Calculer la longueur AS.

II - Sur la figure ci-contre, le triangle AMB est rectangle en M.



L'unité étant le centimètre, on donne :

- MA = 6; MB = 3.
- R est le point du segment [AM] tel que AR = x avec 0 < x < 6.

- S est le point de la demi-droite [IVIB] exterieur au segment [IVIB] et tel que BS = x.
- 1) a) Montrer que l'aire en cm² du triangle MAS est égale à : 3x + 9.

Montrer que l'aire en cm² du triangle MBR est égale à : $-\frac{3}{2}x+9$.

- b) A l'aide des résultats du a), prouver que l'aire en cm² du quadrilatère ARBS est égale à $:\frac{9}{2}x$.
- 2° Pour quelle valeur de x l'aire du quadrilatère ARBS est-elle égale à l'aire du triangle MBR ?

Calculer alors la valeur commune à ces deux aires.

- 3° Sur une feuille millimétrée, construire un repère orthogonal tel que:
- l'origine est placée en bas à gauche ;
- en abscisse, 3 cm représentent 1 unité;
- en ordonnée, 1 cm représente 1 unité.
 - a) Tracer dans ce repère les droites :
- (D₁) d'équation : $y = -\frac{3}{2}x + 9$
- (D_2) d'équation : $y = \frac{9}{2}x$
- b) Retrouver, par lecture sur le graphique précédent, les réponses à la question \mathbf{H} -2). Faire apparaître en pointillés les tracés nécessaires à cette lecture.