Cretell 90

PARTIE NUMERIQUE

Exercice 1:

Calculer, puis simplifier : $A = \frac{13}{14} - \frac{1}{15} \times \frac{10}{7}$.

Exercice 2:

Calculer B et C, en donnant le résultat sous la forme $m\sqrt{p}$, où m et p sont des nombres entiers, p étant le plus petit possible :

$$B = 7\sqrt{15} \times 2\sqrt{35} \times \sqrt{3} ;$$

$$C = (2 - 3\sqrt{5})(15 + 2\sqrt{5}).$$

Exercice 3:

Factoriser l'expression : $D = (2x + 1)^2 - 64$.

Exercice 4:

Résoudre l'équation : (5x+4)(3-2x)=0.

Exercice 5:

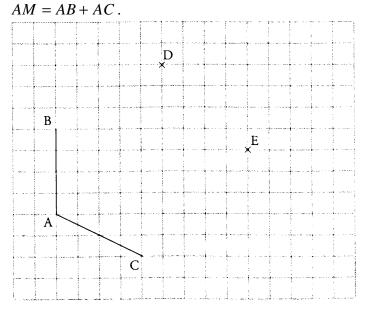
Roméo veut offrir un bouquet de fleurs à sa bien-aimée. Le fleuriste lui propose :

- un bouquet composé de 8 iris et de 5 roses, pour un prix total de 142 francs ;
- un bouquet composé de 5 iris et de 7 roses, pour un prix total de 143 francs.

Calculer le prix d'un iris et le prix d'une rose.

Pour cela, vous appellerez x le prix d'un iris et y celui d'une rose, puis vous mettrez ce problème en équation. Enfin, vous vérifierez votre réponse par un calcul que vous écrirez sur la copie.

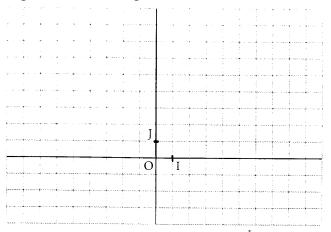
PARTIE GEOMETRIQUE


Les trois exercices qui suivent sont indépendants.

Exercice 1:

Placer les points T, P et M tels que :

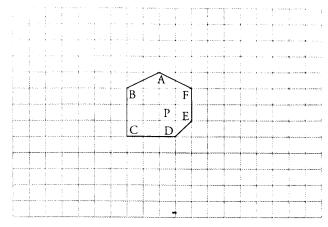
$$DT = AC ;$$


$$EP = BA + AC ;$$

Exercice 2:

Le plan est rapporté à un repère orthonormé (O, I, J).

1) Représenter les deux points A(- 3 ; 4) et B(2 ; 7).



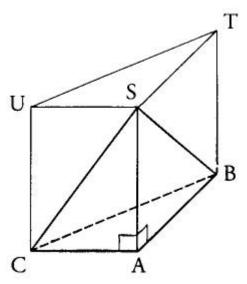
- 2) Calculer les coordonnées du vecteur AB.
- 3) Calculer la distance AB.

- 4) Determiner une equation de la droite (AB).
- 5) Déterminer une équation de la droite Δ , parallèle à l'axe des ordonnées, et passant par le point B. La tracer.

Exercice 3:

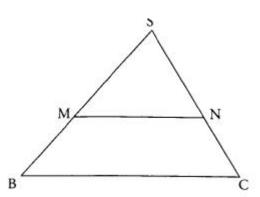
Le polygone ABCDEF est noté P

Dessiner, sur cette figure:


- 1) L'image P_1 de P par la symétrie axiale pat rapport à la droite (DE).
- 2) L'image P₂ de P par la symétrie de centre C.
- 3) L'image P_3 de P par la translation de vecteur CA .

PROBLEME (12 points)

Dans une très large mesure, les questions de ce problème sont indépendantes.


STUABC est un prisme droit, et SABC est une pyramide à base triangulaire.

Dans la suite du problème, les longueurs, en centimètres, sont données par : AC = 4.5 ; AB = 6 ; BC = 7.5 ; SB = 7.

- 1) Dessiner un patron de la pyramide SABC. Vous laisserez en évidence les lignes de construction.
- 2) Les calculs doivent être justifiés et les justifications soigneusement rédigées.
 - a) Calculer la hauteur SA de la pyramide. Donner la valeur exacte.
- b) Calculer la mesure de l'angle \hat{ASB} . On donnera la valeur arrondie à 1° prés.
 - c) Démontrer que ABC est un triangle rectangle.
- d) Calculer l'aire de la base ABC, puis le volume V de la pyramide SABC. On donnera la valeur arrondie du résultat à 1 cm³ prés.
- e) On a placé un point M sur l'arête [SB] et un point N sur l'arête [SC] de façon que la droite (MN) soit parallèle à la droite (BC), et que SM=4,2. (La figure ci-après indique seulement la position des points, mais ne respecte pas les dimensions.)

Calculer la longueur du segment [MN].

