L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année.

- Pierre possède 500 euros d'économies le 1^{er} janvier. Il décide d'ajouter 27 euros le 27 de chaque mois.
- Sophie ne possède que 400 euros d'économies le 1^{er} janvier, mais elle décide d'augmenter ses économies de 10% le 27 de chaque mois.
- 1°) De combien dispose chaque personne fin janvier ? fin février ?

2°) Cas de Pierre.

On note U_0 la somme initiale reçue le 1^{er} janvier, et U_n la somme disponible à la fin du n^e mois. La suite (U_n) ainsi définie est représentée par le graphique ci-dessous.

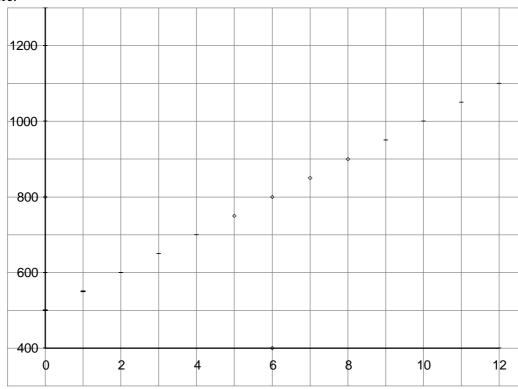
- a) Par lecture graphique, donner la nature de la suite (U_n), son premier terme et sa raison.
- b) Exprimer U_{n+1} en fonction de U_n , et retrouver la nature de la suite (U_n) .
- c) Montrer que $U_n = 500 + 50n$. Calculer la somme dont dispose Pierre à la foin de l'année.
- d) Calculer le pourcentage d'augmentation de ses économies entre le 1^{er} janvier et le 31 décembre.

3°) Cas de Sophie

On note V_0 la somme initiale reçue le 1^{er} janvier, et V_n la somme disponible à la fin du n^e mois. Soit (V_n) la suite ainsi définie.

- a) Démontrer que la suite (V_n) est la suite géométrique de raison 1,1 et de premier terme 400.
- b) Montrer que $V_n = 400 (1,1)^n$. Calculer la somme dont dispose Sophie à la fin de l'année, arrondie à un euro près.
- c) Calculer le pourcentage d'augmentation de ses économies entre le 1^{er} janvier et le 31 décembre.
- d) La copie d'écran ci-dessous est celle d'un tableur :

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
N														
2														
3	n	0	1	2	3	4	5	6	7	8	9	10	11	12
4	V _n	400												


Les colonnes sont repérées par des lettres A, B, C...; les lignes sont repérées par des numéros 1, 2, 3...; ainsi, la référence E3 repère la cellule se trouvant à l'intersection de la colonne E et de la ligne 3.

Quelle formule doit—on taper dans la cellule C4 pour y obtenir le terme correspondant de la suite (V_n) ? On recopie cette formule vers la droite. Quelle formule se trouve dans la cellule N4?

Reproduire le tableau ci-dessus et le compléter à l'aide de votre calculatrice (les résultats seront arrondis à un euro près).

4°) Comparaison des deux cas

- a) Tracer sur le graphique ci-dessous la représentation graphique de la suite (V_n) .
- b) Déterminer graphiquement le mois à la fin duquel les économies de Sophie deviennent supérieures à celles de Pierre.

