Statistiques à deux variables Exercices

<u>Exercice 1</u> : dans le tableau ci-dessous, on donne la pluviométrie moyenne mensuelle sur le département de la Meuse au cours des 30 dernières années.

Mois	Janv	Fev	Mar	Avr	Mai	Juin	Juil	Aoû	Sept	Oct	Nov	Dec
Pluviométrie (mm)	102	82	85	69	75	82	81	68	80	97	97	124

- 1. Représenter le nuage de points dans un repère orthogonal en prenant comme unités :
 - en abscisse : 1 cm pour un mois (numéroter les mois de 1 à 12).
 - en ordonnée : 1 cm pour 10 mm de pluie.
- 2. On se propose de tracer la droite d'ajustement de ce nuage de points.
 - Calculer les coordonnées des points moyens G_1 et G_2 correspondant respectivement au premier et au second semestres.
 - Tracer la droite d'ajustement passant par les points G_1 et G_2 .
- 3. Déterminer l'équation de la droite d'ajustement.

Exercice 2 : dans le tableau ci-dessous, on donne la taille moyenne (en cm) des nouveaux nés en fonction du nombre de l'âge gestationnel (en semaines). Données 1990

Âge gestationnel (semaines)	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Taille (cm)	47,5	48,5	49	49,7	50	50,5	50,8	51,2	51,5	51,8	52,2	52,5	52,8	53	53,5	53,7

- 1. Représenter le nuage de points dans un repère orthogonal en prenant comme unités :
 - en abscisse : 1 cm pour 1 semaine (commencer la graduation à 20 semaines)
 - en ordonnée : 2 cm par unité (commencer la graduation à 45 cm)
- 2. On se propose de tracer la droite d'ajustement de ce nuage de points.
 - Calculer les coordonnées des points moyens G_1 et G_2
 - Tracer la droite d'ajustement passant par les points G_1 et G_2 .
- 3. Déterminer l'équation de la droite d'ajustement.