
soit (C) le cercle trigonométrique de centre O et d'origine A. Soit le point D tel que $(\overrightarrow{OA}; \overrightarrow{OB}) = \frac{\pi}{2}$.

1- Dans le repère (O; \overrightarrow{OA} ; \overrightarrow{OD}), **lire** les coordonnées des points A, M₁, M₂, B, M₃, A', M₄, B' et **remplir** (arrondir les résultats au dixième) le tableau suivant :

Points	A	\mathbf{M}_1	M_2	В	M_3	A'	M_4	В'	M_5
Abscisse x	1	0,8	0,7	0	-0,5	-1	-0,7	0	0,5
Ordonnée y	0	0,5	0,7	1	0,8	0	-0,7	-1	-0,8

2- Donner la mesure principale exacte des angles orientés du tableau suivant :

Angles orientés	$(\mathbf{OA} ; \mathbf{OA})$	$ (OA ; OM_1)$	$\longrightarrow \longrightarrow$ (OA ; OM_2)	(OA ; OB)	$ (OA ; OM_3)$	$ \longrightarrow$ (OA ; OA')	$\longrightarrow \longrightarrow$ (OA ; OM_4)	$ \longrightarrow$ (OA ; O B')	$\longrightarrow \longrightarrow$ (OA; OM ₅)
Mesure principale en radian α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$
Cos α	1	0,9	0,7	0	- 0,5	-1	- 0,7	0	0,5
Sin α	0	0,5	0,7	1	0,9	0	- 0,7	-1	- 0,9

3- À l'aide la calculatrice, **compléter** les deux dernières lignes du tableau.

S'assurer dans le SETUP (schift menu) que l'angle est en radian (rad)

Remarque : Séquence d'utilisation de la touche cos (ou sin)

Exemple: Valeur de $\cos \frac{\pi}{3}$

$$\begin{bmatrix} \cos \left(shift \times 10^x \right) & \div \end{bmatrix}$$
 $\begin{bmatrix} 3 \\ \end{bmatrix}$ $\begin{bmatrix} EXE \\ \end{bmatrix}$

Valeur affichée :

0,5

5- En comparant les tableaux de la question 1 et 2, **établir** une relation entre les coordonnées (x, y) de chacun des points du cercle trigonométrique et le cos α et le sin α .

$$x = \cos \alpha$$

$$y = \sin \alpha$$

6-

a) Calculer les valeurs approchées <u>au dixième</u> des nombres suivants :

$$\frac{\sqrt{2}}{2} = 0.7$$

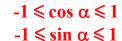
$$\frac{\sqrt{3}}{2} = 0.9$$

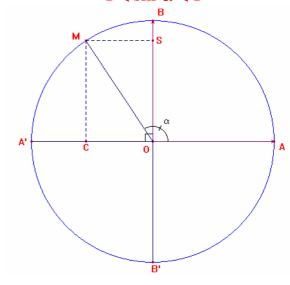
b) En utilisant les résultats précédents, **compléter** le tableau suivant en donnant les **valeurs exactes** des sinus et des cosinus des angles suivants :.

Mesure principale en radian α	- π	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	π
Cos α	1	$-\frac{\sqrt{2}}{2}$	0	$\frac{1}{2}$	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	-1
Sin α	0	$-\frac{\sqrt{2}}{2}$	1	$-\frac{\sqrt{3}}{2}$	1	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	0

7- Quelles sont les valeurs minimale et maximale des coordonnées d'un point du cercle ? En déduire un encadrement de $\cos \alpha$ et $\sin \alpha$.

Valeur minimale : -1 Valeur maximale : 1


8- En considérant le triangle OSM rectangle en S de la figure ci-contre, **donner** la valeur de $\cos^2 x + \sin^2 x$.


$$OM^2 = OS^2 + SM^2$$

$$OM^2 = (\cos \alpha)^2 + (\sin \alpha)^2$$

$$Or OM = 1$$

$$\cos^2\alpha + \sin^2\alpha = 1$$

