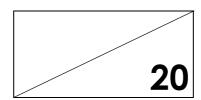
Terminale B.E.P Métiers de l'électronique

Epreuve : MATHÉMATIQUES - SCIENCES PHYSIQUES

Durée : 2 heures

Mathématiques


1, 2, 3 et 4

Note:...../ 10

Sciences	Physic	lues

5, 6 et 7

Note:...../ 10

Calcul algébrique	1,5 pts
Fonction carrée	3,5 pts
Géométrie plane	3 pts
Suite arithmétique	2 pts

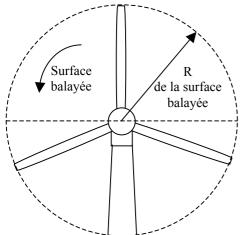
Équilibre de solide	3 pts
Pression	3,5 pts
Chimie	4 pts
électricité	2 pts

REMARQUE:

- o La clarté du raisonnement et la qualité de la rédaction seront prises en compte à la correction.
- o Revoir les cours nécessaires à la résolution de chaque partie
- o Une copie pour les maths, une copie pour la sciences physiques

NOM:	Classe :
Prénom:	

DL5_rev_2003.doc Page 1 sur 1 20/05/2003


LES EOLIENNES PRINCIPE

Une éolienne est une machine qui transforme l'énergie du vent (déplacement d'une masse d'air) en énergie mécanique ou électrique.

PARTIE MATHEMATIQUES

Exercice 1: (1,5 point)

Les pales d'une éolienne sont montées sur un rotor. Lors de leur mouvement, les extrémités décrivent un cercle.

On estime que la puissance récupérable P par une éolienne est fonction de l'aire S de la surface balayée et du cube de la vitesse v du vent, comme le montre la formule suivante :

$$P = 0.2 \text{ S } \text{v}^3$$

P : puissance de l'éolienne (W) S : aire de la surface balayée (m²)

v : vitesse du vent (m/s)

- 1. Calculer, en m², l'aire S pour un rayon R égal à 15. Arrondir le résultat à l'unité.
- 2. **Calculer,** en watt, la puissance P d'une éolienne pour S égale à 7000 m² et pour une vitesse du vent v égale à 12 m/s.

Exercice 2: (3,5 points)

On admet que le calcul de la puissance P de cette éolienne de diamètre D est donné par la relation :

$$P = 250 D^2$$

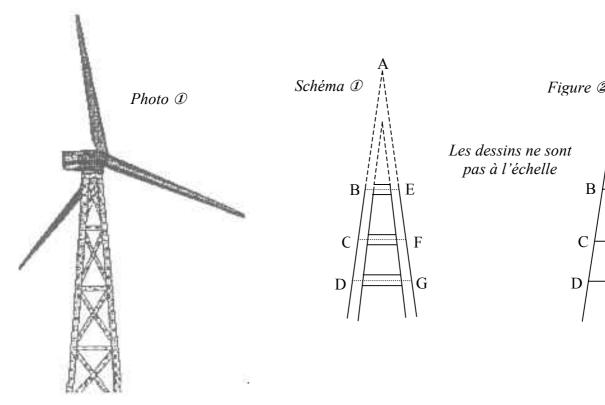
- 1. **Compléter** le tableau de *l'annexe 1*.
- 2. **Tracer**, pour D appartenant à l'intervalle [0 ; 24], la courbe représentative de la fonction f telle que :

$$f(D) = 250D^2$$

P = 205D²

en utilisant le repère de *l'annexe 1*.

3. **Déterminer** graphiquement le diamètre d'une éolienne dont la puissance P est de 125 000 W. **Laisser** apparaître les traits utiles à la lecture.


Exercice 3: (3 points)

Certaines éoliennes sont montées sur des pylônes métalliques. Le pylône de l'éolienne en photo ① est représenté par le schéma ①. On utilisera la figure ② pour résoudre le problème.

Données du problème :

- 1. Calculer, en mm, la longueur du tube BE.
- 2. Calculer, en mm, la longueur AH. Arrondir le résultat au millième.

DL5 rev 2003.doc Page 2 sur 2 20/05/2003

Exercice 4: (2 points)

On considère que les longueurs, exprimées en mètre, des tubes métalliques BE, CF et DG du pylône forment les trois premiers termes d'une suite arithmétique de raison r.

$$u_1 = BE$$
, $u_1 = 0.2$; $u_2 = CF$, $u_2 = 0.5$ et $u_3 = DG$, $u_3 = 0.8$.

- 1. Calculer la raison r de cette suite.
- 2. **Calculer** le 20^e terme (u₂₀) de la suite arithmétique correspondant à l'écartement entre 2 poteaux à la base du pylône.

PARTIE SCIENCES

Exercice 5: (4 points)

Grande éolienne : 250 kW

Е

F

G

Н

Type: 3 pales

<u>Rotor et pales</u> : Aire de la surface balayée : $S = 693 \text{ m}^2$

Masse de l'ensemble pales-rotor-nacelle : m = 28 tonnes

1. <u>Pression exercée par le vent</u>:

Le vent exerce une force horizontale ${\cal F}$ sur la surface balayée.

Pour une vitesse de vent égale à 7 m/s, la pression p exercée sur la surface S balayée par les pales est de 250 pascals (Pa). **Calculer** dans ce cas, la valeur F de la force exercée par le vent sur l'éolienne.

2. <u>Etude de l'équilibre d'un système</u> :

- 2.1. Calculer la valeur P du poids de l'ensemble palesrotor-nacelle : on prendra g = 9.81 N/kg.
- 2.2. L'ensemble rotor-pales ② exerce sur la nacelle ①

 une force horizontale F. Le mât exerce sur la

 nacelle une force R.

A l'aide du tableau des caractéristiques des forces de l'annexe 2, on veut déterminer les caractéristiques

de la force R.

On demande, sur l'annexe 2.

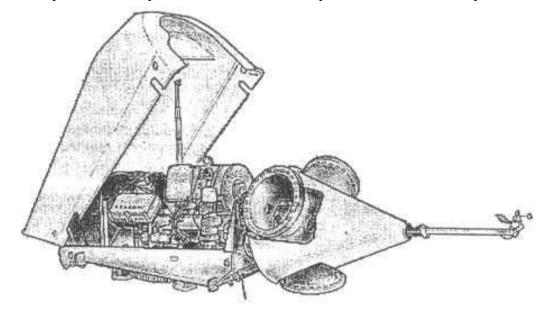
- **De tracer,** sur le schéma 1, les droites d'action des forces P', F' et R';
- ➤ **De tracer** à partir du point M le dynamique des forces (triangle des forces) ;
- \triangleright **De déduire** les caractéristiques inconnues de la force $\stackrel{\frown}{R}$ (compléter le tableau des caractéristiques).

<u>Rappel</u>: à l'équilibre on a: P+F+R=0, les forces sont coplanaires et les droites d'actions sont concourantes.

Exercice 6: (4 points)

Les pylônes métalliques doivent être protégés contre la corrosion pour éviter l'oxydation. Lors de l'oxydation il apparaît de l'oxyde de fer Fe₂O₃ suivant l'équation de réaction :

Fe + O_2 Fe₂ O_3

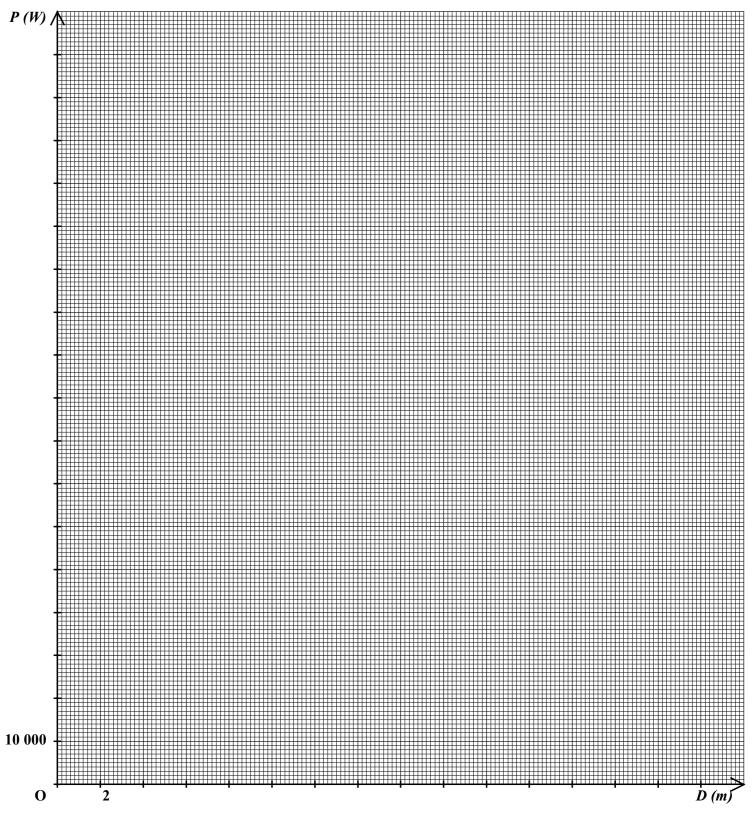

- 1. **Donner** le nom et le nombre d'atomes de chacun des éléments chimiques constituant l'oxyde de fer Fe_2O_3 .
- 2. Calculer la masse molaire moléculaire de l'oxyde de fer Fe₂O₃.

On donne: M(Fe) = 56 g/mol; M(O) = 16 g/mol.

- 3. **Recopier** et **équilibrer** l'équation bilan de la réaction chimique.
- 4. Calculer la masse de fer qui produit 1 kg d'oxyde de fer Fe₂O₃.

Exercice 7: (2 points)

Les éoliennes sont équipées d'un système de chauffage à l'intérieur de la nacelle pour éviter de points d'oxydation sur les parties métalliques et de moisissures lorsqu'elles ne fonctionnent pas.


- 1. Les indications du chauffage sont 230 V et 200 W. **Préciser** pour chacune des indications le nom de la grandeur et le nom de son unité.
- 2. Calculer la valeur de l'intensité I du courant électrique qui circule dans la résistance chauffante. Arrondir le résultat au centième.
- 3. Calculer la valeur de la résistance R du système de chauffage. Arrondir le résultat à l'unité.

ANNEXE 1

2.1. Tableau de valeurs:

D (m)	0	2	4	8	12	16	20	24
P (W)		1 000			36 000	64 000		

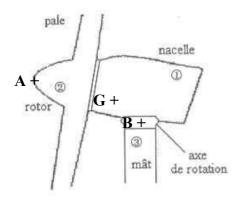
 $2.2 \underline{\text{Courbe}}$: P = f(D)

ANNEXE 2

1. Calculer, en N, la valeur de la force <i>I</i>	de la force exercée par le vent :
2. Calculer, en N, la valeur du poids $\stackrel{\rightarrow}{P}$	de l'éolienne

3. Etude de la force R qui s'exerce sur l'axe de rotation au point B.

Force	Point d'application	Droite d'action	Sens	Intensité (N)
$\stackrel{ ightarrow}{P}$	G	Verticale	\	275 000
F	A	Horizontale	\rightarrow	175 000
$\stackrel{ ightarrow}{R}$	В	•••••	•••••	•••••


> Tracer les trois droites d'action des forces

$$\overrightarrow{P}$$
, \overrightarrow{F} et \overrightarrow{R} .

➤ Construction à partir du point M du dynamique des forces : <u>échelle</u> : 1 cm pour 25 000 N

M +

Schéma 1

