
Seconde professionnelle Industrielle

Epreuve : MATHÉMATIQUES - SCIENCES PHYSIQUES

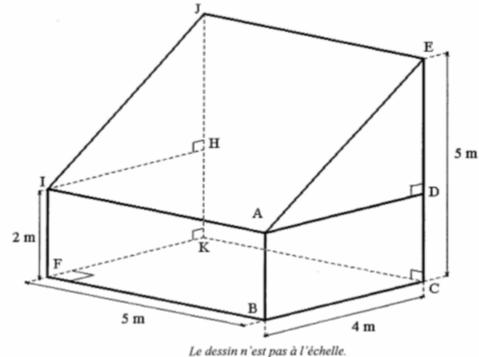
Durée: 2 heures

	Mathématiques	
	I, II, III	
No	ote:/ 1	0

Sciences Physiques				
IV, V et VI				
Note : / 10				

Géométrie et calculs numériques (I)	5 pts
Géométrie (II)	5 pts
Géométrie (III)	5 pts

Masse volumique (IV)	5 pts
Masse volumique et densité (V)	2,5 pts
Concentration massique (VI)	2,5 pts


REMARQUES:

A LIRE IMPERATIVEMENT!

- La clarté du raisonnement et la qualité de la rédaction seront prises en compte à la correction.
- o La partie maths et la partie sciences seront rédigées sur des copies séparées.
- o L'usage des instruments de calcul est autorisé.
- Il est formellement interdit de communiquer ! (calculatrice, correcteur, rapporteur, effaceur, ...)
- o Le formulaire est disponible à la fin du sujet.
- o Pour la partie maths, vous traiterez au choix 2 exercices.

NOM:	Classe :
Prénom:	

Monsieur Georges veut construire une serre à ossature métallique pour abriter ses différentes espèces de cactus. Pour connaître le matériel nécessaire à la construction, il a réalisé le croquis suivant, en perspective :

ABCD et IFKH sont des rectangles identiques.

ADE et IHJ sont des triangles rectangles identiques.

ABFI est un rectangle

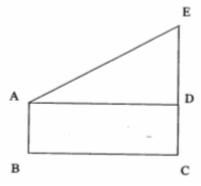
CEJK est un carré.

$$AB = 2m$$

BC = 4m

CE = 5m

BF = 5m


Première partie CALCULS NUMERIQUES

- 1) Compléter le bon de commande de *l'annexe 1*
- 2) Calculer le coût total des matériaux nécessaires à la construction.

Deuxième partie

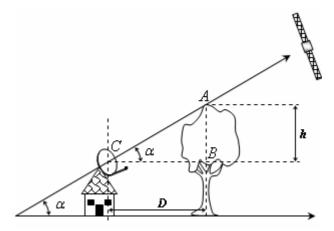
GEOMETRIE

Avant de passer commande, monsieur GEORGES décide de vérifier certaines mesures. On considère la face latérale ABCE de la serre.

- 1) Calculer la longueur ED puis la longueur de la poutrelle AE.
- 2) Calculer, au degré près, l'angle \widehat{DAE} du toit.
- 3) Calculer l'aire du quadrilatère ABCE.
- 4) Calculer le volume de la serre.

Monsieur Dupont désire installer une antenne parabolique.

Voici la documentation fournie par le constructeur :

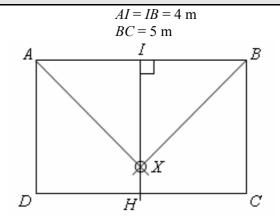

Angle α d'élévation entre 30 et 40°

Avant d'acheter ce kit satellite, vérifiez que vous avez la possibilité d'installer la parabole à un endroit dégagé vers le sud, sans obstacle proche montant du sol (arbres, immeubles, collines, etc ...)

RÈGLE DES DISTANCES :

Vous devez placer votre parabole à une distance au sol au moins supérieure à 1,5 fois la hauteur de l'obstacle placé devant.

Distance au sol : $D = 1.5 \times h$


- 1- L'emplacement prévu pour la parabole est situé à une distance D = 8 m d'un arbre. Celui-ci dépasse d'une hauteur h = 5,20 m la hauteur de la parabole. En utilisant la documentation constructeur, vérifier que l'installation est possible dans cette configuration.
- 2- Dans le cas limite où D = 1.5 h, quelle est la valeur de l'angle α arrondie à 0.1 degré?

MATHEMATIQUES III: | GEOMETRIE |

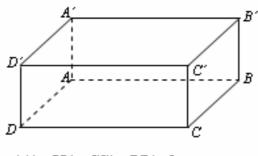
BEP groupe académique sud Est secteur3 2003

On désire installer un élevage de poules dans un bâtiment dont la surface au sol est un rectangle ABCD de dimensions 8 m et 5 m.

Le système de chauffage est assuré par un convecteur infrarouge suspendu au plafond. On appelle X le point au sol situé à la verticale du convecteur. On veut que ce point X soit disposé à égale distance de trois des quatre murs selon le schéma ci-contre.

A. Localisation du convecteur infrarouge

Sur le dessin du rectangle ABCD de l'annexe 1 :


- 1. Construire la médiatrice [IH] du segment [AB]. Laisser apparents les traits de construction.
- Construire les bissectrices des angles \widehat{A} et \widehat{B} du rectangle. Laisser apparents les traits de construction.
- 3. Placer le point X.

B. Calcul des longueurs

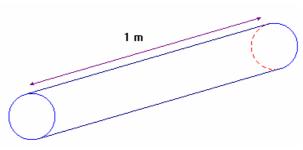
Plutôt que de faire cette construction géométrique, on s'aperçoit qu'il suffit de tracer IH puis de déterminer la longueur XH.

- 1. **Déterminer** la nature du triangle *AIX*. **Justifier** la réponse.
- 2. En déduire la longueur IX.
- **3.** Calculer la longueur *XH*.

C. Calcul du volume du poulailler

AA' = BB' = CC' = DD' = 3 m

Le poulailler est un pavé droit de base ABCD et de hauteur AA'.

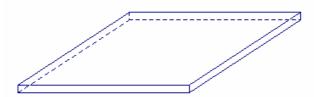

- 1. Calculer le volume *V* du poulailler.
- 2. Pour l'été, il est prévu un système de renouvellement de l'air par ventilateur. On désire renouveler entièrement l'air du poulailler en 4 heures.

Quel doit être le débit D du ventilateur ? On donnera le résultat en m^3/h puis en m^3/min .

Rappel:
$$D = \frac{V}{t}$$

SCIENCES PHYSIQUES IV

- 1- Un carreau de marbre, de volume 0,25 dm³, a pour masse 675g. **Calculer** la masse volumique du marbre.
- 2- L'essence a pour masse volumique 740 kg/m³. **Calculer** la masse d'essence contenue dans un réservoir de voiture de volume 54L.
- 3- Une masse marquée de 200g est en laiton. Sachant que la masse volumique de cet alliage est 8,4g/cm³, calculer le volume de cette masse marquée.
- 4- Un morceau d'aluminium de masse volumique 2,7 kg/dm³.
 - a- Sachant que la masse volumique de l'eau est de 1 kg/dm³, **calculer** la densité de l'aluminium.
 - b- En déduire si ce morceau d'aluminium peut flotter sur l'eau.
- 5- Un fil de cuivre cylindrique a un diamètre de 1 mm et une longueur de 1m. **Calculer** sa masse sachant que la masse volumique du cuivre est 8 900 kg/m³.



Données :

- masse volumique : $\rho =$
- densité d'un corps par rapport à l'eau : $d = \frac{\rho_{corp}}{\rho_{eau}}$

SCIENCES PHYSIQUES V

Une dalle de polystyrène expansé a pour masse 360 g et une épaisseur de 4 cm. On donne la densité du polystyrène expansé : d = 0.018.

- 1) Calculer la masse volumique du polystyrène expansé sachant que la masse volumique de l'eau est $\rho_{eau} = 1 \text{g/cm}^3$.
- 2) En déduire le volume de la dalle. Convertir ce volume en litre (L).
- 3) On admet que le volume de la dalle est $V = 2.10^5$ cm³. Calculer la surface de la dalle en m².

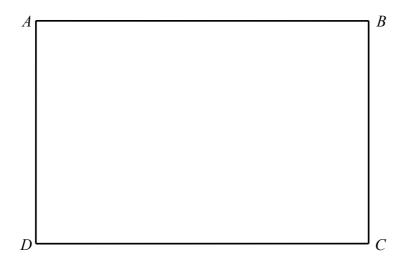
SCIENCES PHYSIQUES VI

Un comprimé d'aspirine contient 500 mg d'acide acétylsalicylique de formule C₉H₈O₄. On le dissout dans 100 mL d'eau.

- a- Quel est le solvant ? Quel est le soluté ?
- b- Quelle est la concentration massique d'acide acétylsalicylique dans la solution ?

Annexe 1

MATHEMATIQUES I : CALCULS NUMERIQUES CA


CAP_groupe interacadémiqueII_secteur3_2002

Bon de commande : achat de matériaux de construction d'une serre					
Nombre	Désignation	Prix de vente unitaire TTC	Total TTC		
8	Poutrelle ACIER 5 mètres	243,90 €			
4	Poutrelle ACIER 4 mètres	198,17 €			
2	Poutrelle ACIER 2 mètres	137,20 €			
2	Vitre sur profilé aluminium 25 m²	807,93 €			
1	Vitre sur profilé aluminium 10 m²	533,54 €			
2	Vitre sur profilé aluminium 8 m²	436,83 €			
2	Vitre sur profilé aluminium 6 m²	365,85 €			
	COUT TOTAL				

MATHEMATIQUES III: GEOMETRIE

BEP_groupe académique sud Est_secteur3_2003

A. Localisation du convecteur infrarouge

