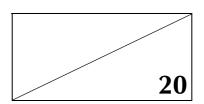
Seconde professionnelle Industrielle


Métier de l'électricité

Epreuve : MATHÉMATIQUES - SCIENCES PHYSIQUES

Durée : 2 heures

	Mathématiques
	I, II, III
N	ote : / 10

Sciences Physiques				
IV, V et VI				
Note:/ 10				

Calculs numériques et algébriques (I)	4 pts
Transformations de formules (II)	3 pts
Transformations de formules (III)	3 pts

Réaction chimique V	2 pts
Réaction chimique IV	4 pts
Réaction chimique VII	4 pts

REMARQUE:

- La clarté du raisonnement et la qualité de la rédaction seront prises en compte à la correction.
- o L'usage des instruments de calcul est autorisé.
- Il est formellement interdit de communiquer ! (calculatrice, correcteur, rapporteur, effaceur, ...)
- Le formulaire est disponible à la fin du sujet.

NOM:	Classe :
Prénom:	

DS9_ind1_3.doc Page 1 sur 7 14/12/2003

MATHEMATIQUES I

1) Soit l'expression:

$$E = 4x^2 - 9 + (2x + 3)(x - 1)$$

a- Factoriser $4x^2 - 9$.

b- Utiliser ce résultat pour factoriser E.

2) On considère l'expression :

$$G = (2x + 5)^2 - (x + 3)(2x + 5)$$

a- Développer et simplifier G.

b- Calculer l'expression G pour $x = -\frac{2}{3}$

MATHEMATIQUES II

BEP groupe académique Est secteur5 2003

Dans un centre industriel de distillation, l'eau du réservoir alimente le condenseur par l'intermédiaire de la conduite AB.

Le débit d'eau Q à l'extrémité B d'une conduite horizontale est donné par l'expression :

$$Q = \frac{25\pi}{2} \sqrt{\frac{D^5 h}{6\ell}}$$

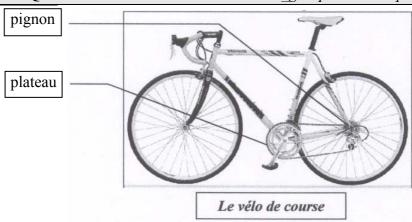
Q : débit de l'eau en m³/s

D : diamètre de la conduite en m

l : longueur de la conduite en m

h : hauteur entre le centre de la conduite et la surface libre de l'eau en m

La hauteur d'eau h est maintenue constante afin d'obtenir un débit Q constant à l'entrée du condenseur.


Données:

$$D = 36 \text{ mm et } \ell = 1,25 \text{ m}.$$

- 1) Calculer, en m³/s, la valeur de Q, si h = 1,5 m. Exprimer ce résultat en L/s. Arrondir le résultat au centième.
- 2) **Calculer**, en m, la valeur de h pour obtenir un débit de 5.10⁻³ m³/s. **Arrondir** le résultat au centième.

MATHEMATIQUES III

BEP/CAP groupe académique grand est secteur3 2003

On note:

- Z_1 le nombre de dents du plateau avant et Z_2 le nombre de dents du plateau arrière.
- n la fréquence de pédalage, nombre de tours de pédale par minute.
- *d* le développement (en mètre), distance parcourue en un tour de pédalier.

Le tableau ci-dessous donne le développement *d* en fonction du nombre de dents du plateau et du pignon.

Tableau des développements d en mètre.

Plateau Z ₁				Pignon a	rrière Z ₂			
	13 dents	14 dents	16 dents	17 dents	19 dents	••••	22 dents	23 dents
40 dents	6,51	6,04	5,29	4,97	4,45	4,23	3,84	3,68
50 dents	8,13	7,55	6,61	6,22	5,56	5,29	4,81	4,60

Par exemple, avec le grand plateau de 40 dents et le pignon arrière de 22 dents, le développement est de

On admettra que la vitesse du vélo est donnée par la formule (1) : v = 0.06 dn

Repérer et **noter** la valeur de *d* en utilisant le tableau si $Z_1 = 50$ et $Z_2 = 14$. 1

Calculer la vitesse v du vélo si n = 100.

Calculer *d*, arrondie à 10^{-2} si v = 18,43 et n = 80. 2

En déduire, à l'aide du tableau, les valeurs correspondantes Z_1 et Z_2 .

On donne la formule permettant de calculer le développement d : 3

$$d = \frac{\pi \ D \ Z_1}{Z_2}$$
 Calculer Z_2 si $Z_1 = 50$.

D représente le diamètre de la roue en mètre.

On donne D = 0.673; d = 5.29.

SCIENCES PHYSIQUES IV

CAP_Groupe académie grand est secteur 1 2003

1							2
Н							He
1 g.mol ⁻¹							4 g.mol ⁻¹
Hydrogène							Hélium
3	4	5	6	7	8	9	10
Li	Be	В	C	N	О	F	Ne
6,9 g.mol ⁻¹	9,0 g.mol ⁻¹	10,8 g.mol ⁻¹	12,0 g.mol ⁻¹	14,0 g.mol ⁻¹	16,0 g.mol ⁻¹	19,0 g.mol ⁻¹	20,1 g.mol ⁻¹
Lithium	Béryllium	Bore	Carbone	Azote	Oxygène	Fluor	Néon
11	12	13	14	15	16	17	18
Н	Mg	Al	Si	P	S	Cl	Ar
23,0 g.mol ⁻¹	24,3 g.mol ⁻¹	28,1 g.mol ⁻¹	28,1 g.mol ⁻¹	31,0 g.mol ⁻¹	32,1 g.mol ⁻¹	35,5 g.mol ⁻¹	39,9 g.mol ⁻¹
Sodium	Magnésium	Aluminium	Silicium	Phosphore	Soufre	Chlore	Argon

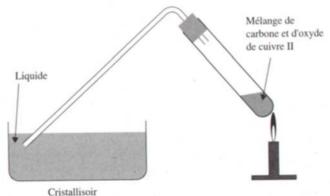
1) Compléter sur <u>la feuille annexe 1</u> le tableau (2 cases) ci-dessous à l'aide de l'extrait de la classification périodique ci-dessus :

Nom	Hydrogène	Carbone	•••••
Symbole	Н	C	0
Modèle	•	•	
Masse molaire atomique	1 g.mol ⁻¹	12,0 g.mol ⁻¹	g.mol ⁻¹

2) Le propane C₃H₈ brûle complètement avec le dioxygène de l'air pour donner du dioxyde de carbone CO₂ et de l'eau. **Compléter** sur *l'annexe 1* le tableau suivant (7 cases) :

Nom	Dioxyde de carbone eau		Propane
Symbole	CO_2		
Modèle	O-C-O	н—о—н	H H H H—C—C—C—H H H H
Constitution	1 atome de carbone	atome(s) d'oxygène	atome(s)
Constitution	2 atomes d'oxygène	atome(s) d'hydrogène	atome(s)
Masse molaire atomique	44 g.mol ⁻¹	18 g.mol ⁻¹	····· g.mol ⁻¹

SCIENCES PHYSIQUES V


CAP/BEP_Groupe académique Ouest secteur 1 2003

Description de l'expérience concernant l'action du carbone sur l'oxyde de cuivre II.

Dans un tube à essai, on fait chauffer un mélange d'oxyde de cuivre II (CuO) et de carbone (C). La couleur de ce mélange est noire.

Après avoir chauffé le tube à essai, on constate que :

- Le liquide placé dans le cristallisoir est troublé par un dégagement de dioxyde de carbone (CO₂).
- Le mélange dans le tube à essai devient rouge : du cuivre (Cu) s'est formé.

- 1) Citer les réactifs mis en présence dans l'expérience.
- 2) Quels sont les produits formés ?
- 3) Recopier et équilibrer l'équation bilan de cette réaction :

$$\ldots$$
 CuO + \ldots C \longrightarrow \ldots Co₂ + \ldots Cu

- 4) Calculer la masse molaire de l'oxyde de cuivre II puis celle du dioxyde de carbone.
- 5) Dans l'expérience, on a utilisé 159g d'oxyde de cuivre II.
 - a. Quel est le nombre de moles d'oxyde de cuivre II correspondant ?
 - b. Quelle relation existe-t-il entre la quantité de matière d'oxyde de cuivre, la quantité de matière de cuivre et la quantité de matière de dioxyde de carbone ?
 - c. En déduire la masse de cuivre formée et le volume de dioxyde de carbone dégagé.
- 6) Quel nom porte le liquide contenu dans le cristallisoir qui a été troublé par le dioxyde de carbone ?

Données :	$M(C) = 12 \text{ g.mol}^{-1}$	$M(Cu) = 63.5 \text{ g.mol}^{-1}$	$M(O) = 16 \text{ g.mol}^{-1}$
	$n = \frac{m}{M}$	$n = \frac{V}{V_m}$	
	Le volume molaire d	lans les conditions de cette expérier	nce est $V_m = 24 \text{ L.mol}^{-1}$

SCIENCES PHYSIQUES VI

CAP/BEP Groupe académique Ouest secteur3 2003

L'aluminium est un élément chimique de symbole ²⁷/₁₃Al.

Partie A

1) Compléter sur *la feuille annexe 2* le tableau ci-dessous.

Atome d'aluminium					
Numéro atomique	Nombre de masse	Nombre de protons	Nombre	Nombre de	
Trumero atomique			d'électrons	neutrons	
•••••	•••••	•••••	•••••	•••••	

2) Quel est l'ion formé lorsque l'atome d'aluminium perd trois électrons ? Pour répondre à cette question vous compléterez le bilan électrique de <u>la feuille annexe 2.</u>

Partie B

De la poudre d'aluminium s'enflamme très facilement et brûle dans le dioxygène de l'air pour former de l'alumine (oxyde d'aluminium de formule Al₂O₃).

La réaction chimique est traduite par l'équation bilan incomplète suivante :

 $4 \text{ Al} + \dots O_2 \longrightarrow 2 \text{ Al}_2O_3$

- 1) Recopier et compléter l'équation bilan sur <u>l'annexe 2</u>.
- 2) On réalise la combustion de 5,4g d'aluminium.
 - a- Calculer le nombre de moles contenues dans les 5,4g d'aluminium.
 - b- Quelle relation existe-il entre la quantité de matière d'aluminium et la quantité de matière d'alumine ?
 - c- En déduire le nombre de moles d'alumine.
 - d- Calculer la masse molaire d'alumine.
 - e- En déduire la masse d'alumine formée lors de cette combustion.

<u>Données</u>: $M(Al) = 27 \text{ g.mol}^{-1}$ $M(O) = 16 \text{ g.mol}^{-1}$

Annexe 1

SCIENCES PHYSIQUES V

CAP Groupe académique grand est secteur 1 2003

1)

Nom	Hydrogène	Carbone	•••••
Symbole	Н	C	О
Modèle		•	
Masse molaire atomique	1 g.mol ⁻¹	12,0 g.mol ⁻¹	g.mol ⁻¹

2)

Nom	Dioxyde de carbone	eau	Propane
Symbole	CO_2	•••••	•••••
Modèle	O-C-O	н—о—н	H H H H—C—C—C—H H H H
Constitution	1 atome de carbone	atome(s) d'oxygène	atome(s)
	2 atomes d'oxygène	atome(s) d'hydrogène	atome(s)
Masse molaire atomique	44 g.mol ⁻¹	18 g.mol ⁻¹	g.mol ⁻¹

Annexe 2

SCIENCES PHYSIQUES VI

CAP/BEP Groupe académique Ouest secteur3 2003

Partie A

1)

Atome d'aluminium						
Numéro atomique	Nombre de masse	Nombre de protons	Nombre d'électrons	Nombre de neutrons		
		•••••	•••••			

2) Bilan électrique		Charge	
•••••	Électrons :	•••••	
•••••	Protons :	• • • • • •	Noyau
•••••	Neutrons :	•••••	Noyau
	_	• • • • • •	_
	Symbole	• • • • • •	
	Par	rtie B	_

1)

Equation bilan		+ <u> </u>	
Coefficients stœchiométriques	••••	•••••	
Quantité de matière au cours d'une réaction	n	n	n