CORRIGE DU DNB groupement inter académique II

Série technologique Session 2005

<u>Première partie.</u>

1°)
$$A = \frac{4^2 \times 4^6}{4^5} = 4^{2+6-5} = 4^3 = 64$$
; $A = 64$
 $B = \frac{5}{6} - \frac{2}{8} = \frac{5}{6} - \frac{1}{4} = \frac{10}{12} - \frac{3}{12} = \frac{7}{12}$; $B = \frac{7}{12}$
 $C = 6,4 \times 10^3 \times 1,2 \times 10^{-2} = 6,4 \times 10 \times 1,2 = 6,4 \times 12 = 76,8$; $C = 76,8$
 $D = \frac{7+(-3)}{2} + \frac{6-8}{(-2)} = \frac{4}{2} + 1 = 2 + 1 = 3$; $D = 3$

2°) a) F = 71.6 N; à un dixième près.

b) p = 101 300 pa = 1,013
$$\times$$
 10⁵ pa; $p = 1,013 \times 10^5$ pa.

3°) a) E =
$$(3 \times -2)(x + 4) = 3 \times^2 + 10 \times -8$$
.

b)
$$G = \boxed{16 \times^2 + 24 \times + 9}$$
.

4°)a) On lit: 2,5 milliard d'habitants, en 1950.

b) On lit: 6,4 milliard d'habitants, en2004.

c)
$$6,4 - 2,5 = 3,9$$
.

L'augmentation est de : 3, 9 milliard d'habitants.

d)
$$\frac{3.9 \times 100}{2.5}$$
 = 156. On trouve 156 %.

e)
$$6.4 \times 2.56 = 13.80$$
.

En 2050, il y aurait : 13,8 milliards d'habitants.

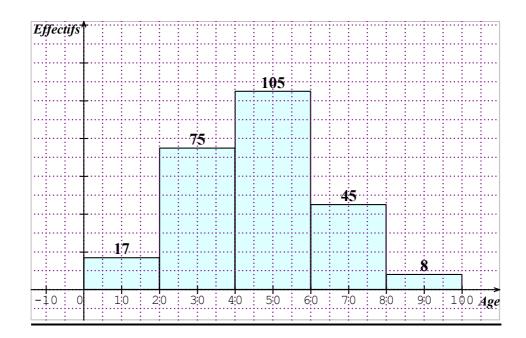
f) Non, car ils proposent 8,9 milliard, seulement!

Deuxième partie. (Partie B)

Exercice 1.

a)

b) En complétant, on obtient : voir page 2.


c) Il y a : 17 + 75 = 92 Adhérents.

d) Il y a : 45 + 8 = 53 Adhérents.

<u>Tableau</u>:

<u>Age</u>					<u>Effectifs</u>	<u>Fréq %</u>	<u>Centre</u>	<u>Produit</u>
[0	;	20	[17	6,8	10	170
[20	;	40	[75	30	30	2 250
[40	;	60	[105	42	50	5 250
[60	;	80	[45	18	70	3 150
[80	;	100	[8	3,2	90	720
Totaux					250	100		11 540

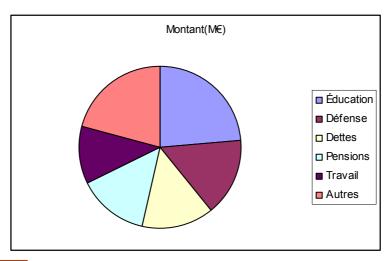
Histogramme:

e) Il y a : 75 + 105 = 180 Adhérents.

Soit, en pourcentage :

$$\frac{180 \times 100}{250} = 72.$$

Le taux cherché est : 72 %.


f) La moyenne sera de : $\frac{11540}{250}$ =46, 16

Une moyenne de: 46 ans.

Exercice 2. 1°) On obtient le tableau suivant :

<u>Poste</u> Budgétaire	Éducation	<u>Défense</u>	<u>Dettes</u>	Pensions	Travail	<u>Autres</u>	TOTAL
Montant(M€)	66	44	40	40	32	58	280
Fréq. (%)	23,6	15,7	14,3	14,3	11,4	20,7	100
Angle en °	85	57	51	51	41	75	360

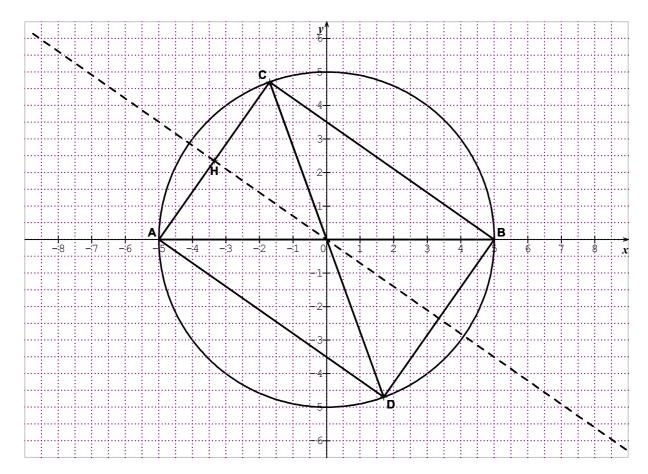
2°) On a, alors:

Deuxième partie. (Partie A)

Voir figure page suivante.

- 5°) Le triangle AOC, ayant deux côtés égaux : OA = OC = 5 cm, est un triangle isocèle, en O.
- 6°) Avec cette affirmation, la médiatrice (OH) du segment [AC] est aussi bissectrice de l'angle $A\hat{O}C$. Ainsi, on aura :

$$A\hat{O}H = \frac{70}{2} = 35^{\circ}$$
.


7°) On aura, donc :

OH = $5 \times \cos 35^{\circ} \approx 4.1$; OH ≈ 4.1 cm.

- 8°) a) De même: HC = $5 \sin 35^{\circ} \approx 2.9$; HC $\approx 2.9 \text{ cm}$.
 - c) $AC = 2 \times 2.9 = 5.8$, car H est milieu de [AC], par construction.

$$AC = 5.8 \text{ cm}$$

9°) [AB] est diamètre du cercle (\mathcal{C}), donc le triangle ABC est rectangle en \mathcal{C} .

10°) Les diagonales du quadrilatère ACBD ont même milieu O, par construction. C'est donc un <u>parallélogramme</u>, de plus il a un angle droit en C, d'après la question précédente. Or un parallélogramme qui a un angle droit est un rectangle.

Le quadrilatère ACBD est un rectangle.

Troisième partie.

1°) Complétons le tableau :

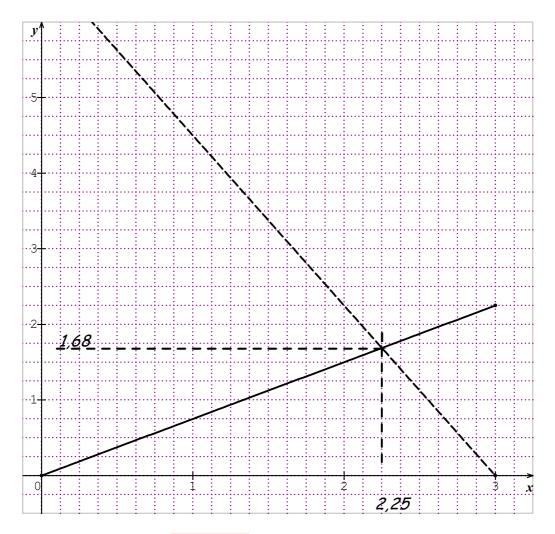
Hauteur de la sculpture (m)	Hauteur de la pyramide (m)	<u>Hauteur du</u> <u>parallélépipède</u> <u>(m)</u>	Aire de la <u>base</u> <u>carrée</u> (m²)	<u>Volume de la</u> pyramide (m³)	<u>Volume du</u> <u>parallélépipède</u> <u>(m³)</u>
3,00	2,00	3 - 2 = 1	1,5 ² = 2,25	$\frac{2,25\times2}{3}$ = 1,5	1 × 2,25 = 2,25

2°)a)
$$V_1 = \frac{1}{3} \times 2,25 \times \text{hauteur} = 0,75 \times ; V_1 = 0,75 \times .$$

b) On aura : h = 3 - x

c) De même : $V_2 = 2,25 (3-x) = 6,75 - 2,25 x$;

$$V_2 = 6,75 - 2,25 \times$$


3°) a) f est linéaire, car de la forme ax, avec a = 0.75.

g est affine, car de la forme ax + b, avec a = -2,25 et b = 6,75.

b) Tous calculs faits, on aura:

X	0	1	2	2,5	3
f(x) = 0.75 x	0	0,75	1,5	1,875	2,25
g(x)= -2,25 x + 6,75	6,75	4,5	2,25	1,125	0

c)

4°) On trouve le point I avec x = 2,25.

5°)

a) L'équation devient :

$$0,75 x = 6,75 - 2,25 x$$
$$3 x = 6,75$$
$$x = \frac{6,75}{3}$$

x = 2,25

La solution est : x = 2,25.

- b) On trouve dans les deux cas, <mark>la même valeur pour x</mark> , soit 2,25 !
- c) Comme f(x) = g(x); les deux volumes seront égaux, si le sculpteur choisit pour la pyramide, la hauteur : 2, 25 m.